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Abstract
The rapid development of the online apparel shopping industry demands innovative solutions for high-quality
digital apparel sample displays with virtual avatars. However, developing such displays is prohibitively
expensive and prone to the well-known “uncanny valley” effect, where a nearly human-looking artifact
arouses eeriness and repulsiveness, thus affecting the user experience. To effectively mitigate the “uncanny
valley” effect and improve the overall authenticity of digital apparel sample displays, we present a novel
photo-realistic portrait generation framework. Our key idea is to employ transfer learning to learn an identity-
consistent mapping from the latent space of rendered portraits to that of real portraits. During the inference
stage, the input portrait of an avatar can be directly transferred to a realistic portrait by changing its appearance
style while maintaining the facial identity. To this end, we collect a new dataset, Daz-Rendered-Faces-
HQ (DRFHQ), specifically designed for rendering-style portraits. We leverage this dataset to fine-tune the
StyleGAN2-FFHQ generator, using our carefully crafted framework, which helps to preserve the geometric
and color features relevant to facial identity. We evaluate our framework using portraits with diverse gender,
age, and race variations. Qualitative and quantitative evaluations, along with ablation studies, highlight our
method’s advantages over state-of-the-art approaches.
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1 INTRODUCTION

Over the past decade, online clothing shopping has led to the development of digital garment examples created with professional
design softwares1,2,3. The garment, the human body, and the face dominate the content of display images. However, creating
visually convincing and photorealistic display images of these samples involves a range of laborious and expertise-intensive
operations, such as high-quality garment modeling, high-fidelity human modeling, material creation, and lighting setup. The
appearance of avatars’ faces, in particular, has a significant impact on the authenticity of a display image and also poses a
particular challenge to create the display image realistically. To generate high-fidelity faces, multi-view stereo system-based4

and light-stage-based facial appearance capture methods5,6 have been proposed. However, these approaches are highly expensive
and time-consuming. Despite the superior quality of these faces, they often contain subtle unrealistic details that are immediately
noticeable because humans are innately sensitive to such details when perceiving faces. These unrealistic flaws can suddenly shift
a person’s response to the avatars from empathy to eerie, frightening, or revulsion, a phenomenon known as the “uncanny valley”
effect7,8, which significantly detracts from the user experience. The rise of deep learning, in particular Generative Adversarial
Networks (GANs)9, has inspired researchers to develop high-quality face generation methods10. In recent years, StyleGAN11

and its variants12, along with their inversion techniques13, have paved the way for the semantic manipulation14 of photo-realistic
portraits. The existing methods that can improve the realism of avatar faces15 are all based on projecting the rendering-style
faces into the pretrained StyleGAN2-FFHQ generator, thanks to its high generation quality and diversity. Garbin et al. 16 matches
a non-photorealistic portrait to a latent code of the pretrained StyleGAN2 generator while maintaining pose, expression, hair,
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(a) (b) (c) (d) (e) (f)

F I G U R E 1 Given digital apparel sample display images as input (a, c), our method can effectively improve the realism of
avatars’ faces (b, d). The gray boxes highlight the faces. We also apply our method to rendering-style portraits (e), producing
photo-realistic results (f).

and lighting consistency. Despite the attempt to adapt to the real face domain, their method requires a substantial amount of
processing time for each image. Furthermore, since the input is out of the domain of the pretrained model, the output often has
artifacts such as distortion and identity inconsistency. Chandran et al.15 project high-quality yet incompletely rendered facial
skin into the latent space of StyleGAN2, generating temporally-coherent and photo-realistic portraits. Nevertheless, their method
is more of an inpainting process for the missing face components, such as hair, eyes, and mouth interior. Also, the output images
still retain the rendering style thus lack authenticity.

The limitations of the existing works motivate us to present a novel StyleGAN-based portrait generation framework to
increase the authenticity of digital apparel display. We propose a transfer-learning-based approach to establish the correlation
between portrait images with different styles. The key idea is to develop an identity-consistent fine-tuning method that results in
a rendering-style generator with facial identities matching those of the realistic-style StyleGAN2-FFHQ generator. We treat
a latent code in the W+ latent space of a portrait as an implicit representation of both portrait style and identity. While the
portrait style can be either a rendering style or a realistic style corresponding to the two generators, the portrait identity is shared
in-between. That is, if we project a rendered portrait into the rendering-style generator’s W+ latent space, the realistic-style
StyleGAN2 generator can interpret the resulting latent code as a realistic-style portrait with the rendered portrait’s facial identity.
We find that by doing so, the rendering-style can be effectively removed from the final output, and the facial identity can be
preserved without distortion. Based on this principle, we first collect a new dataset of rendering-style portraits, Daz-Rendered-
Faces-HQ (DRFHQ). Inspired by StyleGAN2-ada17, we use DRFHQ to finetune the pretrained StyleGAN2-FFHQ generator,
resulting in a rendering-style StyleGAN2-DRFHQ generator. During finetuning, we constrain with sketches and color to help
the new generator maintain facial identities. Then we perform latent code optimization to project the input rendering-style
portrait into StyleGAN2-DRFHQ’s latent space. Finally, we feed the resulting latent code into the pretrained StyleGAN2-FFHQ
generator, yielding a photo-realistic portrait with preserved facial identity. Extensive evaluations demonstrate that our work is
capable of generating plausible results for digital apparel sample display.

In summary, our work makes the following contributions:

• We present the first portrait generation framework to overcome the “uncanny valley” effect in digital apparel sample displays.
• Based on a new high-quality rendering-style portrait dataset (DRFHQ), we propose a novel transfer-learning-based approach

to correlate portraits with different styles in the learnt latent space while preserving facial identity.
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2 RELATED WORK

2.1 Portrait Synthesis.

Human face modeling and rendering is a crucial and active research topic for applications in the entertainment, film, and
television industries. Most physically-based rendering methods require a multi-view stereo system to reconstruct pore-level
geometry and skin reflectance properties4. To capture detailed human faces, a number of light-stage-based approaches6 have
been developed based on the seminal work for facial appearance capturing and reconstruction5. Although the photo-realistic
renderings of avatars are almost indistinguishable from real humans, the “uncanny valley” effect occurs when an anomaly is
revealed from their seemingly realistic appearance18. Researchers have suggested methods to measure the “uncanny valley”
effect19, however, it is difficult to eliminate such an unpleasant effect in traditional rendering. Since their introduction in 2020,
neural radiance fields (NeRF)20 have spawned a slew of downstream applications, including face synthesis. However, existing
face modeling and rendering methods still struggle to produce photo-realistic results that can avoid the “uncanny valley” effect.
The introduction of generative adversarial networks (GANs)9 sparks an increasing number of face synthesis models10,12. Among
these works, StyleGAN12 is mostly favored due to its synthesis quality and manipulation ability, and serves as an inspiration for
many downstream works21.

2.2 Face Style Transfer using StyleGAN.

Portrait style transfer using StyleGAN is also related to our work. Pinkney and Adler22 use a resolution-dependent method to
interpolate different styles at appearance and geometry levels. Wu et al.23 conduct a thorough investigation into the properties
of aligned StyleGAN and use their findings to investigate potential applications such as cross-domain image morphing and
zero-shot vision tasks. In addition to example images, StyleGAN-NADA24 uses text prompt as input to stylize portraits with the
help of a pretrained CLIP model. This line of research has been expanded to videos25 to achieve consistent results in a sequence.
Sang et al.26 also attempt to create stylized and editable 3D models directly from users’ avatars. However, the above methods
are intended to generate stylized portraits from real photos, whereas our work aims at the opposite: transfer the “rendering-style”
of the rendered portraits into the “realistic-style” of the results that are indistinguishable from real portraits.

2.3 Face Realism Improvement using StyleGAN.

Improving the realism of rendered faces is still a challenging issue. Garbin et al.16 propose a zero-shot image projection
algorithm that requires no training data to find the latent code that most closely matches the input face. Their objective is the
most similar to ours. Chandran at al.15 use a multi-frame consistent method to project the traditional incomplete face rendering
results into latent space to achieve realistic rendering and animation of a full-head portrait. Despite generating realistic full-head
portraits, their primary goal is to inpaint the missing components. As a result, their method preserves the input rendered skin but
is incapable of improving the faces’ authenticity. The StyleGAN encoders27 and some optimization-based methods28 can project
the rendered faces into StyleGAN’s latent space. However, the rendered faces are far outside the domain of the real faces, thus
resulting in distortion and artifacts or maintaining the “rendering-style”. Different from these methods, we focus on producing
realistic portraits for digital apparel sample display while preserving the facial identity.

3 METHOD

Our goal is to improve the authenticity of the digital apparel sample display by replacing the avatar’s portrait with a realistic one
while maintaining the avatar’s facial identity. At the same time, we leave all other portions of the body unchanged to retain the
appearance of the garment.

Fig. 2 demonstrates the key idea of our approach. We conduct portrait replacement in the latent space by employing latent
code that implicitly represents portrait style and identity as the interface in-between. As shown in Fig. 2 (a), we establish
identity-consistent transfer learning on the StyleGAN generator of realistic portraits (Greal), resulting in a fine-tuned generator
(Grendering) of portraits with a different style, i.e., the “rendering” style. The transfer learning is performed in a way that given a
single latent code in the W+ latent space, the portrait identity can be well preserved in both generators, only the portrait style is
interpreted differently as “realistic-style” by Greal and “rendering-style” by Grendering. In other words, the same latent code can
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F I G U R E 2 The central idea of our method.

generate two portraits with distinct styles but matched identity. Unlike the style change in the fine-tuning process, during the
inference phase (see Fig. 2 (b)), we aim to “invert” the style of the input portrait from “rendering” to “realistic”. We begin by
applying GAN inversion to obtain the avatar’s latent code in the W+ latent space of Grendering. The latent code is then fed into
Greal to adapt to the realistic style while preserving identity. In the end, we achieve the final result - a photorealistic portrait with
the identity of the input avatar.

The rest of the section is organized as follows. We begin by introducing DRFHQ, a new high-quality rendering-style portrait
dataset used for transfer learning (Sec. 3.1). Then we elaborate our transfer learning strategy, which initializes Grendering with the
weights of Greal and fine-tunes Grendering with a different style while minimizing other irrelevant changes (Sec. 3.2). Finally, we
present how we increase the authenticity of digital apparel sample display in the inference phase (Sec. 3.3).

3.1 Daz-Rendered-Faces-HQ dataset

We create Daz-Rendered-Faces-HQ (DRFHQ), a dataset that comprises high-quality rendering-style portrait images, by
collecting daz3d.com’s gallery29. DRFHQ contains 11,399 high-quality PNG images in 10242 resolution, with a wide range of
gender, age, pose, race, hairstyle, etc. We first align and crop the raw images using Dlib30 according to the preprocessing method
of FFHQ, then manually filter the aligned images. Due to copyright restrictions, we cannot release the collected images but will
provide the corresponding URLs as an alternative. Although several publicly available rendering-style datasets exist31,32,33,34,
their face resolution is insufficient for high-quality digital apparel sample display31,34, or they only contain a small number of
rendered faces32,33, or they are rendered using a small number of face models (100 different identities)34. DRFHQ is the first
high-quality rendering-style dataset with a face region resolution of 10242 that can be extended to downstream tasks, to the best
of our knowledge.

3.2 Identity-Consistent Transfer Learning

Inspired by StyleGAN-ada17, we use DRFHQ to fine-tune the generator Grendering initialized with the weights of the pretrained
StyleGAN2-FFHQ generator Greal, resulting in a new stylized generator StyleGAN2-DRFHQ capable of producing rendering-
style portraits. To replace the rendered face in the digital apparel sample display image with a realistic face while meeting the
designer’s preference, we want to keep the facial identity unchanged to avoid any unnatural artifacts. However, simply fine-tuning
Grendering leads to large facial identity deviations in the fine-tuned latent space compared to the original. To address this issue, we
use two additional losses during the fine-tuning process to constrain the facial identity. The training pipeline is illustrated in Fig. 3.

Our idea is to use the same latent code in W+ latent space to implicitly represent the rendered face and its realistic face
replacement, hence Grendering and Greal are required to share the same W+ latent space. To do this, we freeze the mapping network
during fine-tuning, resulting in a single latent code z in Z latent space being mapped to the same latent code w+ ∈ W+ of
Grendering and Greal. We will omit the unmodified mapping network in the remainder of this section and use w+ as the latent code.
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F I G U R E 3 An overview of our identity-consistent transfer learning network’s training stage.

Sketch loss. Inspired by DeepFaceEditing35, the geometric features of the face can be well represented by sketches. Therefore,
we add the following L1 loss function:

Lsketch = ∥S(Greal(w+) ↓512) – S(Grendering(w+) ↓512)∥1, (1)

where Grendering is to be fine-tuned and initialized by the pretrained Greal, S is the pretrained sketch extractor in DeepFaceEditing35

model, and ↓512 denotes the interpolation operation that downsamples the images to 512 × 512. According to Eq. 1, the output
of Greal and Grendering are fed into S separately to obtain two face sketches, and the geometric contours of the two faces are
constrained to be as similar as possible by using the L1 norm.

Color loss. To preserve the portrait color during transfer learning, we propose a color loss at the perceptual level based on the
LPIPS loss36. However, LPIPS captures the facial appearance similarity, including texture and style-related details, preventing
the generator from learning rendering-style. Inspired by16, we solve this problem by removing the appearance details from
the images. Specifically, we first downsample the images to 256 × 256 and apply Gaussian blur, then feed the images into the
VGG16 network to compute the LPIPS loss:

Lcolor = LPIPS(B(Greal(w+) ↓256), B(Grendering(w+) ↓256), (2)

where B is the Gaussian blur operation with kernel = 13 and σ = 10, and ↓256 denotes the interpolation operation that
downsamples the images to 256×256. Our objective loss function used in fine-tuning is the weighted sum of the following losses:

LG = Lorigin + λsLsketch + λcLcolor, (3)

where we empirically set λs = 5 × 10–6 and λc = 3.75 × 103. Lorigin is the original loss of StyleGAN-ada.

3.3 Inference

In the inference phase, we use the latent optimization37 inversion method to project the rendered portrait x onto Grendering’s latent
space. As we aim for the least distortion, we optimize in the W+ latent space, which has greater expressive potential:

w+∗, n∗ = arg min
w+,n

λnLn(n) + LPIPS(x, Grendering(w+, n)), (4)

where Grendering(w+, n) is image generated by Grendering with noise n, Ln is a noise regularization term, and λn = 1e5. We
initialize w+ as the average latent code in the W+ latent space and use a 500-step optimization to get w+∗. Finally, we input the
resulting latent code w+∗ to Greal, yielding a photo-realistic portrait. We do not employ the optimized noise n∗ here because the
regularization term Ln prevents the noise vector from influencing the final result.
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(a) (b) (c) (d) (e) (f) (g) (h)

F I G U R E 4 Diverse photo-realistic results (bottom) generated by our method.

4 EXPERIMENTS

This section showcases the outcomes of our identity-consistent transfer learning framework. We present the results of our
approach as applied to a series of rendering-style portraits. In Figs. 1(e)(f) and 4, we display a variety of results that span
various genders, ages, and races, effectively illustrating how our approach can adapt across diverse data sources (e.g. Diverse
Human Faces dataset34, internet images38, and rendering-style images generated using Stable Diffusion39. Additionally, we
also showcase some examples where we stitch the generated realistic faces back onto the original garment display renderings
(Fig. 1(a)(b), and Fig. 2 in the supplementary material). Our generated realistic faces can easily blend in with the rendered
garment and virtual avatar bodies with only minor post-processing (see the supplementary material). The adoption of our method
can significantly enhance the overall authenticity of apparel display renderings. In sum, our method effectively overcomes
the “uncanny valley” effect (see Sec. 4.2.1) by largely improving the authenticity of rendered faces while avoiding portrait
infringement liability due to using generated faces. Furthermore, it preserves the facial identity, aligning with the designer’s
preference.

4.1 Implementation Details

Networks. We use the StyleGAN2-ada architecture17 as the backbone for our rendering-style generator. StyleGAN2-FFHQ is
the official pretrained model of StyleGAN2-ada on the FFHQ dataset. We use the training parameters (batch size of 32, learning
rate of 2e – 3) provided in the stylegan2 config of StyleGAN2-ada to finetune StyleGAN2-FFHQ while freezing the weights of
the ToRGB layers and the mapping network. We only update Grendering and the discriminator, while Greal and the sketch extractor
are fixed. The training dataset is amplified with x-flips, and the fine-tuning time is about 40 minutes on 4 Tesla V100 GPUs,
we stop the fine-tuning when the discriminator had seen a total of 40k real images. PyTorch is utilized to train the networks
and all comparisons are conducted on a desktop PC with Intel Core i7-12700F 2.10 GHz CPU, 32GB RAM and GeForce RTX
3080Ti GPU (12GB memory). All images used in the training and testing stages have a resolution of 10242. Regarding runtime
performance, the average time for projecting a rendered portrait into a latent code is 27.6 seconds, with the generation of the
final result only taking 0.05 seconds. All the other steps within our approach require negligible time.

Dataset. The fine-tuned rendering-style generator is trained using the DRFHQ dataset’s 11,399 rendering-style portraits. The
testing images in the paper are from Diverse Human Faces34 dataset (Figs. 2, Fig 4 (a)(b), 11, 13), rendering-style images
generated using Stable Diffusion39 (Figs. 4 (e)-(h), 5, 7, 10), Flickr38 (Fig. 4 (c)(d)), and CONNECT store2 (Fig. 1) with
courtesy of the authors. Specifically, we employ the fine-tuned and LoRA models based on Stable Diffusion 1.5 for generating
rendering-style images.

4.2 Comparison with State-of-the-Art Methods

We begin by presenting comparisons between our proposed method and state-of-the-art (SOTA) facial realism-improving
methods. In Sec. 2, we mentioned that previous works15,16 can enhance the realism of rendered faces. However, their datasets

https://civitai.com/

https://civitai.com/
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and codes are not publicly accessible. Therefore, we rely on comparisons with StyleGAN inversion methods (Sec. 4.2.1) and
SDEdit (Sec. 4.2.2). Subsequently, we provide comparisons between our identity-consistent style-transfer method and SOTA
style-transfer methods (Sec. 4.2.3).

4.2.1 Comparison with StyleGAN inversion methods

We perform qualitative and quantitative experiments to compare our method with StyleGAN inversion methods, which project
unrealistic images onto the manifold of natural images through image inversion.

Qualitative evaluation. To accomplish qualitative comparison, we directly project the input rendered portrait into the W+
latent space of StyleGAN2-FFHQ via StyleGAN inversion, and then compare the inversion results with our own outcomes.
As illustrated in Fig. 5, we use e4e40, pSp41, HyperStyle42, ReStyle43, and latent code optimization44, for comparison. Those
encoders are trained on both FFHQ dataset and StyleGAN2-FFHQ. For ReStyle, we run testing on both e4e and pSp encoders,
using the ReStyle scheme. For latent code optimization, we use the same inversion method described in Sec. 3.3 to project the
input images into the W+ latent space of StyleGAN2-FFHQ. It is clear that those encoders lose many skin characteristics and
produce faces with only smooth skin, which lacks realism. Furthermore, they retain the rendering style of the input images that
looks unrealistic. Our method, on the other hand, produces more photo-realistic results with more natural facial details and
completely changes the input image’s unrealistic rendering-style appearance while maintaining facial identity consistency.

Ourse4eInput Latent Code 
Optimization

pSp HyperStyle ReStyle-pSp ReStyle-e4e

F I G U R E 5 Qualitative comparisons with state-of-the-art StyleGAN inversion methods.

Quantitative evaluation. To the best of our knowledge, currently there is no viable quantitative metric for assessing the
authenticity of synthetic portraits. Furthermore, determining the authenticity of a portrait is largely dependent on human cognitive
abilities. In light of this, we devised a user study as a quantitative experiment, with the goal of comparing the authenticity
of the results produced by our proposed method to those produced by SOTA StyleGAN inversion methods. We collected ten
rendered portraits and subjected them to the six StyleGAN inversion methods mentioned above (see qualitative experiments
in Sec. 4.2.1) and our proposed method, respectively. We presented these ten sets of test cases sequentially to 20 participants,
randomly displaying the results for authenticity comparison. Fig. 6 shows that the vast majority of our results are more realistic.
This demonstrates our approach’s superiority over other StyleGAN inversion methods in improving the authenticity of rendered
portraits.
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Figure 11: Distribution of the user study on the
authenticity of apparel display im-
ages. The y−axis represents the
number of output images from our
method selected by the participants
(out of 40 pairs), and the x−axis rep-
resents the number of participants.

4.4 User study.
To validate the advantage of using realistic
faces, we gathered 20 full-body apparel display
images and processed them using our frame-
work, yielding 20 pairs of images with faces of
rendering style and realistic style, respectively.
Our test cases are split into two parts. The first
part consists of the 20 pairs of full-body ap-
parel display images mentioned above, which
are used to verify whether the face realism in-
fluences the participant’s cognitive judgments of
the authenticity of the overall apparel display
image. The second part contains 20 pairs of face
portraits that are used to verify the realism of
the faces generated by our method. We present
these 40 pairs of test cases in sequence to 20
participants, with the original and processed im-
ages in each pair randomly displayed. Fig. 11
demonstrated that the vast majority of both the
full-body apparel display images and the faces
generated by our work are considered more re-
alistic. This suggests that our approach is suc-
cessful not only in enhancing the authenticity of
facial regions but also in augmenting the realism
of the full-body apparel images.

5 Limitations and future work
Our method has some limitations. When the
input faces contain accessories such as unique
glasses and hats, our model’s results have visible
inconsistencies with the original images (Fig.
12(a)). This is due to the lack of correspond-
ing relevant semantics in the FFHQ latent space.
This limitation can be addressed by enriching
the diversity of photo-realistic face datasets. Our
method meets the challenges to reconstruct the
image backgrounds (Fig. 12(b)). We attribute
this to StyleGAN’s weak expressive capacity for
complicated backgrounds. It can be solved by

(a) (b) (c) (d)

Figure 12: Example of failure cases.

removing the generated background using the
alpha matte. We notice that our approach can-
not process those faces with extreme poses (Fig.
12(c)). This is caused by the imbalanced pose
distribution in the training dataset (both FFHQ
and DRFHQ). This can be improved by increas-
ing the pose diversity of the dataset and retrain-
ing the StyleGAN model. Although our method
can preserve the identity of the input rendered
avatar, small chromatic aberration and misalign-
ment still exist when we paste the resulting por-
trait back onto the full-body apparel sample dis-
play image (Fig. 12(d)). To achieve seamless
integration, a lightweight post-processing (de-
tailed in the supplementary material) of the re-
sulting portrait is further applied.

6 Conclusions
We present a novel identity-consistent transfer
learning method that can remove the rendering-
style appearance in the input portraits and gener-
ate photo-realistic portraits. Besides, we create
a high-quality rendering-style portrait dataset,
Daz-Rendered-Faces-HQ (DRFHQ), which in-
cludes 11,399 images with gender, age, pose,
and race variations. To maintain the facial iden-
tity, we employ sketch and color constraints in
the finetuning process of the StyleGAN2 gen-
erator on the DRFHQ dataset. During infer-
ence, we first leverage latent code optimization
to the input rendering-style portrait, then feed
the projected inversion latent code into the real-
style StyleGAN2-FFHQ generator, and finally
obtain the photo-realistic result with consistent
identity. In addition to digital apparel sample
display, our method can be applied to various
downstream tasks, including bringing the char-
acters to life in artworks of numerous forms such
as animation, sculpture, and painting. More-
over, our rendering-style DRFHQ dataset has
the potential to motivate other creative applica-
tions such as virtual avatar synthesis and editing.

F I G U R E 6 The distribution of the user study on the authenticity comparison of the methods for improving facial realism.
The y–axis shows the number of output portraits from our method chosen by participants (out of 10 sets), and the x–axis shows
the number of participants. The results show that our method outperforms other methods for improving facial authenticity.
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4.2.2 Comparison with SDEdit

We conduct a comparison with SOTA diffusion-based method, SDEdit45. SDEdit projects an unrealistic image onto the manifold
of natural images by adding noise and then denoising.

Given a single input, our method generates a singular result, whereas SDEdit produces stochastic results based on the random
noise that is added. Consequently, conducting a fair user study as an alternative to quantitative testing poses challenges. Therefore,
we opt for qualitative experiments exclusively. For each input rendering-style image, we set the hyperparameter t0 = 0.3 for
SDEdit and generate three randomly sampled results utilizing the pretrained latent diffusion model39 trained on the FFHQ
dataset at the resolution of 2562. As shown in Fig. 7, the results produced by SDEdit do not ensure the complete removal of
the rendering-style from the input, and they also do not guarantee facial identity preserving. In contrast, our approach stably
generates more photo-realistic results, showcasing enhanced natural facial details. Moreover, our approach effectively removes
the unrealistic rendering-style appearance of the input image while preserving the consistency of facial identity.

OursInput Stable Diffusion results

F I G U R E 7 Qualitative comparison with SDEdit.

4.2.3 Style Transfer

In this section, we conduct qualitative and quantitative experiments to show the effectiveness of our identity-consistent style
transfer algorithm. We will show that our style-transfer approach surpasses other style transfer methods in both style transfer and
facial identity preservation.

We compare our identity-consistent transfer method to the SOTA StyleGAN-based style transfer methods. Since one-shot
domain adaptation methods46,47 stylize the whole latent space using a single reference image, we cannot apply them to process
our diverse testing images. Thus we make comparisons with StyleGAN-NADA24 and AgileGAN48.

Qualitative evaluation. We present a comparison between the style transfer results of our identity-consistent style transfer
method and those of StyleGAN-NADA24 and AgileGAN48 in Fig. 8. For StyleGAN-NADA, we choose “Photo” as the source
text and “Rendered avatar” as the target text. For AgileGAN, we use our DRFHQ dataset as the training dataset to train
AgileGAN. We compare the images by column generated by different generators using the same latent code. Results show
that the StyleGAN-NADA semantic guidelines are too vague to produce acceptable results. AgileGAN generates artifacts and
unnatural skin color. In contrast, our approach produces rendering-style results while preserving face identity.

Quantitative evaluation. To evaluate the performance in transferring style to that of DRFHQ dataset, we utilize Fréchet
Inception Distance (FID)49 to measure the overall similarity between the distribution of synthesized images and that of the
DRFHQ dataset (see Table 1 column 2). Besides, to evaluate the geometry and color preservation quality, we compute the FID
of the synthesized rendering-style images with respect to the realistic-style FFHQ dataset (see Table 1 column 3). In Table 1,
StyleGAN2-DRFHQ represents our identity-consistent model fine-tuned on our DRFHQ dataset, AgileGAN-DRFHQ represents
AgileGAN48 fine-tuned on our DRFHQ dataset. Since StyleGAN-NADA24 is text-guided and not trained on our DRFHQ
dataset, FID is for reference only. All FID scores are computed from randomly generated 50k images. Lower scores are better.
Our model achieves the lowest FID as shown in Table 1, indicating that our StyleGAN2-DRFHQ model is better at both style
transfer and facial identity preservation.

To further assess the performance in facial identity preservation, we utilize a pretrained CurricularFace network50 to compute
identity similarity during facial style transfer. Specifically, we apply our StyleGAN2-DRFHQ model, AgileGAN-DRFHQ
model, and StyleGAN-NADA model to convert the style of 2k images from realistic to rendering respectively, we then use the
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F I G U R E 8 Qualitative comparisons with SOTA style transfer methods.

T A B L E 1 FID and Identity similarity score for different StyleGAN-based style transfer methods and datasets.

Algorithm DRFHQ↓ FFHQ↓ Identity Similarity ↑

StyleGAN2-DRFHQ (Ours) 24.5 16.3 0.57
AgileGAN-DRFHQ 62.5 83.5 0.14
StyleGAN-NADA 49.9 53.8 0.34

CurricularFace network to measure facial identity. As shown in Table 1 column 4, our StyleGAN2-DRFHQ model exhibits
superior performance in preserving facial identity during the process of style transfer. Higher scores are better.

4.3 Ablation Studies

We perform ablation studies to validate the effectiveness of different components of our work. We first evaluate the two proposed
losses (Sec. 4.3.1), then our transfer-learning-based framework (Sec. 4.3.2), the employed inversion method (Sec. 4.3.3), and
finally our new high-quality rendering-style portrait dataset (Sec. 4.3.4).

4.3.1 Losses

We define StyleGAN2-FFHQ generator fine-tuned on our DRFHQ dataset without sketch and color constraints as the baseline.
As shown in Fig. 9, we feed the same latent codes into generator variants and compare the results.

StyleGAN2-
FFHQ Baseline Oursw/o Lsketch w/o Lcolor

F I G U R E 9 Exemplars of the baseline and ours.

Sketch loss. Without the sketch constraint, the identity of the face generated by the baseline differs significantly from that
of StyleGAN2-FFHQ, thus largely affecting facial identity consistency. Thanks to Lcolor, the generator trained without Lsketch

generates portraits that better maintain the identity. However, the semantic information cannot be well preserved due to the
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downsampling and blurring of the images fed into the VGG16 network (see the details of the facial expressions and wrinkles in
the images). In contrast, Lsketch helps to keep detailed facial structure and semantics in our full model.

Color loss. Compared to generators trained without color constraint, those trained with color constraint can better preserve
the color and lighting of the portraits generated by StyleGAN2-FFHQ.

4.3.2 Framework

Although our sketch loss and color loss provide strong guidance for identity preservation, the proposed losses alone are not
enough to generate satisfactory results without our carefully designed framework. Note that our framework includes model
fine-tuning with our proposed losses, followed by inversion and generation to produce the final results. As a baseline, we directly
project input rendered images into the realistic portrait latent space (StyleGAN2-FFHQ) using our proposed losses as guidance
for latent code optimization.

As shown in Fig. 10, we compare the baseline result to ours. It can be seen that the baseline produces overly smooth results,
while our framework generates more realistic result. Actually, the sketches and downsampled blurry images in the proposed
losses can provide key identity information but at a coarse level, thus leading to smooth results that lack details. In contrast,
our framework uses a ∼10k dataset to fine-tune the StyleGAN2-FFHQ model, which is pretrained on a ∼70k dataset. Both
large-scale datasets are rich in face features at different levels. The fine-tuning process can effectively model the delicate details
of the rendering-style faces in Grender, allowing to achieve more realistic results when transferring to Greal.

Input Baseline Ours

F I G U R E 10 Exemplars of the ablation study of the baseline method and ours.

4.3.3 Inversion

In our framework, we use the latent code optimization described by Roich et al.44 as our inversion method during inference. We
compare it to the following cutting-edge inversion approaches: e4e40, ReStyle scheme on e4e (ReStyle-e4e)43, and II2S51.

For e4e and ReStyle-e4e, we fine-tune their encoders pretrained on the FFHQ dataset using our DRFHQ dataset. Then, we
input the rendered images into these fine-tuned encoders, respectively. For II2S, we use it to directly project input rendered
images into Grendering’s latent space. Finally, we feed these latent codes into Greal to yield the final results for comparison. As
shown in Fig. 11, e4e changes facial identity and gender (the first row). ReStyle-e4e lacks facial details, and II2S modifies input
image attributes (glasses appear in the second row of II2S). In contrast, our inversion method surpasses all others.

Input ReStyle-e4ee4e II2S Ours

F I G U R E 11 Exemplars of the ablation study of different inversion methods.

4.3.4 Dataset

To validate the efficacy of our high-quality rendering-style portrait dataset, DRFHQ, in enhancing facial realism, we qualitatively
and quantitatively compare it with the Diverse Human Faces dataset34. To this end, we replace our DRFHQ dataset with Diverse
Human Faces dataset during generator fine-tuning, while maintaining method consistency.
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Input Diverse Human FacesDRFHQ (Ours)

F I G U R E 12 Exemplars of the ablation study of the Diverse Human Faces dataset and our DRFHQ dataset.

Qualitative evaluation. We enhance facial realism in rendered images using two frameworks: one based on the Diverse
Human Faces dataset and the other on our DRFHQ datasets. Note that the input rendered portraits for inference are not part of
either dataset. As shown in Fig. 12, our DRFHQ dataset-based framework achieves photorealism and facial identity consistency,
while the Diverse Human Faces dataset-based framework exhibits greater disparities in geometry, color and realism. The input
rendered images are generated by Stable Diffusion39 model.

We attribute this phenomenon to the limited diversity of the Diverse Human Faces dataset, which consists of ∼7k images
(after aligning and cropping) but only portrays 100 distinct identities. In contrast, our high-quality DRFHQ dataset contains
∼10k high-quality images with diverse attributes like identity, gender, age, pose, race, hairstyle, lighting, etc. This diversity
effectively models the delicate rendering-style facial details during fine-tuning, leading to more realistic inference outcomes.

Quantitative evaluation. For quantitative evaluation, we employ LPIPS loss36 and L2 loss to assess dataset performance
in information preservation.We compute the two losses from 150 pairs of images for the Diverse Human Faces dataset-based
and our DRFHQ dataset-based frameworks. Lower values indicate better performance. Table 2 demonstrates that our DRFHQ
dataset outperforms the Diverse Human Faces dataset in both metrics, indicating superior overall information preservation.

T A B L E 2 Mean LPIPS and L2 losses.
Dataset LPIPS↓ L2↓

DRFHQ (Ours) 0.135 0.048
Diverse Human Faces 0.176 0.062

5 LIMITATIONS AND FUTURE WORK

Our method has some limitations. When the input faces contain accessories such as unique glasses and hats, our model’s results
have visible inconsistencies with the original images (Fig. 13(a)). This is due to the lack of corresponding relevant semantics
in the FFHQ latent space. This limitation can be addressed by enriching the diversity of photo-realistic face datasets. Our
method meets the challenges to reconstruct the image backgrounds (Fig. 13(b)). We attribute this to StyleGAN’s weak expressive
capacity for complicated backgrounds. It can be solved by removing the generated background using the alpha matte. We notice
that our approach cannot process those faces with extreme poses (Fig. 13(c)). This is caused by the imbalanced pose distribution
in the training dataset (both FFHQ and DRFHQ). This can be improved by increasing the pose diversity of the dataset and
retraining the StyleGAN model. Although our method can preserve the identity of the input rendered avatar, small chromatic
aberration and misalignment still exist when we paste the resulting portrait back onto the full-body apparel sample display
image (Fig. 13(d)). To achieve seamless integration, a lightweight post-processing (detailed in the supplementary material) of
the resulting portrait is further applied.
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(a) (b) (c) (d)

F I G U R E 13 Example of failure cases.

6 CONCLUSIONS

We present a novel identity-consistent transfer learning method that can remove the rendering-style appearance in the input
portraits and generate photo-realistic portraits. Besides, we create a high-quality rendering-style portrait dataset, Daz-Rendered-
Faces-HQ (DRFHQ), which includes 11,399 images with gender, age, pose, and race variations. To maintain the facial identity,
we employ sketch and color constraints in the finetuning process of the StyleGAN2 generator on the DRFHQ dataset. During
inference, we first leverage latent code optimization to the input rendering-style portrait, then feed the projected inversion latent
code into the real-style StyleGAN2-FFHQ generator, and finally obtain the photo-realistic result with consistent identity. We
have extensively validated our approach through both qualitative and quantitative experiments. In addition to digital apparel
sample display, our method can be applied to various downstream tasks, including bringing the characters to life in artworks of
numerous forms such as animation, sculpture, and painting. Moreover, our rendering-style DRFHQ dataset has the potential to
motivate other creative applications such as virtual avatar synthesis and editing.

How to cite this article: Luyuan W, Yiqian W, Yong-Liang Y, Chen L and Xiaogang J. Identity-Consistent Transfer Learning of
Portraits for Digital Apparel Sample Display. J Comput Phys. 2021;00(00):1–18.

APPENDIX

A APPLICATION IN DIGITAL SAMPLE DISPLAY

Fig. A1 shows more exemplars where we replace the original rendering style faces with our generated realistic faces in digital
apparel sample display images. Input images are courtesy of Yayat Punching at the CONNECT store2, except for the first one in
row 1.

B LIGHTWEIGHT POST-PROCESSING

As shown in Fig. B2, directly pasting the resulting portrait back onto the original rendered digital apparel display image may
lead to small chromatic aberration and misalignment. To address this issue, we propose a lightweight post-processing method.

Specifically, we apply face parsing52 to the processed resulting portrait xres, getting the segmentation masks of skin, brows,
eyes, eyeglasses, ears, nose, mouth, lips, and hair. Then we combine them as a single mask m. After that, we paste xres back onto
the original rendered image x, getting x′res, and paste m to an empty image with the same shape as x, getting m′.

To achieve smooth results, we apply erosion and Gaussian blur to m′, the resulting mask with smooth boundary is denoted as
m̂. Finally, we compose the original rendered image x and the intermediate image x′res as:

xfinal = m̂ ⊙ x′res + (1 – m̂) ⊙ x, (B1)

where ⊙ denotes the element-wise multiplication.
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F I G U R E A1 More exemplars of our method’s application in digital sample display. We replace original rendered 3D avatars’
faces with photo-realistic faces generated by our method. The results show that the generated photo-real faces blend in with the
rendered garments and virtual avatar bodies, effectively increasing the authenticity of the digital apparel sample display images.
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F I G U R E B2 An overview of our lightweight post-processing method.
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