
Computational Visual Media
https://doi.org/10.1007/s41095-0xx-xxxx-x

Research Article

GRIG: Data-efficient generative residual image inpainting

Wanglong Lu1,2, Xianta Jiang2, Xiaogang Jin3, Yong-Liang Yang4, Minglun Gong5, Kaijie Shi1,2, Tao Wang6

and Hanli Zhao1(B)

© The Author(s)

Abstract Image inpainting is the task of filling in missing
or masked regions of an image with semantically meaningful
content. Recent methods have shown significant improvement
in dealing with large missing regions. However, these methods
usually require large training datasets to achieve satisfactory
results, and there has been limited research into training such
models on a small number of samples. To address this, we
present a novel data-efficient generative residual image in-
painting method that produces high-quality inpainting results.
The core idea is to use an iterative residual reasoning method
that incorporates convolutional neural networks (CNNs) for
feature extraction and transformers for global reasoning within
generative adversarial networks, along with image-level and
patch-level discriminators. We also propose a novel forged-
patch adversarial training strategy to create faithful textures
and detailed appearances. Extensive evaluation shows that our
method outperforms previous methods on the data-efficient
image inpainting task, both quantitatively and qualitatively.

Keywords Image inpainting, iterative reasoning, residual
learning, generative adversarial networks.

1 Introduction
Image inpainting is a fundamental task in computer graphics
and computer vision [1–4]. It has been employed in many
downstream applications, such as image restoration [5], and
image manipulation [6]. Recently proposed image inpainting

methods have achieved impressive results [7, 8] on both
realistic and facial images [9]. However, these methods have
an overlooked limitation: they require a large amount of
data to train their convolutional neural network (CNN) or
transformer models [10]. When these models are trained on
small image datasets, there is a high possibility of overfitting
and model collapse [11]. In practice, it is much easier for
users if only a small number of training images is required.
Furthermore, in certain image domains (e.g., medical, art,
and historical relics), large image datasets are either too
expensive or infeasible to collect. This has severely restricted
the use of image inpainting in real-world scenarios. Moreover,
real-world data often come with their own set of challenges,
including privacy concerns, data security, and data quality.
These issues can significantly limit the amount of usable data.
Improving the data efficiency of model training can be a crucial
factor in expediting the adoption and application of image
inpainting, thereby increasing its applicability to various fields
that face limitations of data availability. Moreover, small-
scale training samples demand less processing power and
memory, which enhances the feasibility of training models in
resource-limited environments.

Achieving high-quality image inpainting on small-scale
datasets is still a challenging and open problem. Most existing
methods [8, 12, 13] rely on single-pass inferencing which
may generate ambiguous results in inpainted sub-regions.
Some methods [14, 15] perform inpainting in a progressive
fashion by reusing parts of previously inpainted features
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from early refinement stages. However, these methods do not
fully utilize the inpainted pixels as useful information for
the next iteration. Moreover, existing inpainting methods are
not designed specifically for data-efficient learning and may
not work well with a limited number of training samples.
Domain-related prior knowledge [16] or lightweight genera-
tive models [17, 18] may be employed in image inpainting to
mitigate overfitting. However, such approaches do not perform
well when there is a large domain gap between two tasks or
the reduced network capacity affects the inpainting quality.

Thus, we propose a novel data-efficient generative resid-
ual image inpainting framework (GRIG), which enables
high-quality image inpainting on small-scale datasets. To
effectively optimize inpainting results, we use iterative rea-
soning to more accurately and generalizably solve algorith-
mic reasoning tasks [19], based on residual learning [20]
to incrementally refine previous estimates. By continually
updating residual offsets and utilizing inpainted information
from previous iterations, our model dynamically refines the
input image. This approach reduces direct memorization
of input-to-ground-truth mappings, effectively diminishing
overfitting and enhancing visual quality. We also investigate
whether combining iterative reasoning and residual learning
with CNNs and transformers [10], as well as image-level
and patch-level discriminators, can lead to a more robust
and data-efficient method to tackle the data-efficient image
inpainting task.

We have implemented our framework using three compo-
nents: a generator, a projected discriminator, and a forged-
patch discriminator. The generator uses CNNs to extract
shallow features of edges and textures and transformer blocks
to capture global interactions between feature contexts at each
iterative step. To accelerate network convergence and reduce
overfitting, we decouple image distribution learning by using
image-level and patch-level discriminators. We first build
the projected discriminator to capture the whole image-level
distribution. We then use a forged-patch discriminator to
enhance the patch-level details of generated images, as the
projected discriminator has difficulty in capturing fine details
in inpainted images. The inpainting process is carried out
in several forward passes by feeding the generator with the
output of the previous iteration and the corresponding mask.
Experimental results on ten small-scale and four large-scale
datasets show that our method is superior to state-of-the-art
methods in terms of data-efficient and high-quality image
inpainting.

In summary, this paper proposes a novel data-efficient
generative residual image inpainting framework with the

following contributions:
• A novel algorithm for data-efficient image inpainting,

which integrates CNNs and transformers, as well as
employing image-level and patch-level discriminators
for iterative residual reasoning.

• A forged-patch discriminator that assists the genera-
tive network to improve the fine details of generated
images and prevent overfitting for data-efficient image
inpainting.

• State-of-the-art performance on ten small-scale bench-
mark datasets with varying contents and characteristics,
including facial, photorealistic, animal, medical, car-
toon, and artistic images.

The subsequent sections are organized as follows. Section 2
presents an overview of related work, covering both tradi-
tional and deep-learning-based image inpainting methods.
In Section 3, we detail our proposed data-efficient genera-
tive residual image inpainting method. Section 4 presents
benchmarking results and a corresponding analysis of ex-
isting image inpainting approaches on ten small-scale and
four large-scale datasets. Finally, Section 5 summarizes the
findings and conclusions of this study.

2 Related work
Image inpainting can be grouped into traditional image in-
painting methods and deep-learning-based inpainting ap-
proaches. The former mainly rely on low-level features, while
the latter leverage deep neural networks to extract semantic
features [21], resulting in better visual quality. However, there
has been limited research into training such deep-learning-
based models on a small number of samples.

Early image inpainting techniques rely heavily on low-level
features from pixels and image patches. Methods based on
diffusion [22–24] propagate undamaged information along the
boundary to the hole’s center. Patch-based methods [25–27]
iteratively search for and copy similar appearances from image
datasets or known backgrounds. Some variants include GPU-
based parallel methods [28], summarizing non-stationary
patterns [29], and inpainting with nonlocal texture similar-
ity [30]. Because of the lack of semantic understanding of the
image, these methods perform well for small-scale and narrow
missing regions but fail to recover meaningful contents for
large holes.

Deep-learning-based inpainting methods have achieved
great success in semantic completion. Deep neural networks
have been used extensively to improve the visual quality
of inpainting [31]. These works include an auto-encoder-
based architecture [32] and its variants [33–35]. Various
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Fig. 1 Pipeline of our data-efficient generative residual image inpainting framework (GRIG). In each t-th residual reasoning step, the
generator (a) utilizes the (t− 1)-th inpainted image It−1

out to generate the residual image ∆t. In the first residual reasoning step (t = 1), we
set I0out = Iin. With the inpainted image It−1

out and the initial input image Iin, add and replace operations (refer to Eq. 1) are performed to
obtain Itout for the next iterative refinement. During adversarial training, the inpainted image is fed into the projected discriminator (b)
and forged-patch discriminator (c), respectively. At each iterative reasoning step, the loss functions and corresponding back-propagation
are re-computed. During the test phase, a similar multi-step prediction is performed without the loss functions and back-propagation. For
simplicity, down- and up-sampling operations are omitted.

sophisticated modules or learning strategies have been de-
veloped to enhance the effectiveness of image inpainting,
including global and local discriminators [36], contextual at-
tention [37–41] to improve semantic understanding, methods
for dealing with irregular holes [12, 13, 42], and utilization of
auxiliary information (such as sketches [43, 44], foreground
contours [45], structures [44, 46], exemplars [47], and prior
features [1]). Recent research has addressed issues related
to high-resolution [7, 8, 14, 39, 48, 49], pluralistic genera-
tion [8, 12, 50–52], and large hole filling [8, 12, 15, 49, 51–56].
The methods discussed above aim for semantically high-
quality completion, but they may overfit when trained on data
with a small number of samples.

Progressive-based image inpainting methods [14, 15, 53–
55] are closely related to our work. These methods primarily
inpaint pixels from the hole boundary to the center in a
progressive manner [14, 53–55] or employ multi-stage re-
finement schemes [14, 15]. For example, Zeng et al. [14]
improved high-resolution inpainting by iteratively predicting
a confidence map and corresponding intermediate results.
Such methods reuse only a portion of the predicted infor-
mation and do not change pixels with high confidence for
the next iterative inpainting. Recurrent Feature Reasoning

(RFR) [15] runs embedded feature maps through their feature
reasoning module multiple times to generate multiple features
for adaptive feature merging. RFR’s final inpainted results,
on the other hand, are produced from their decoder with a
single forward pass, indicating that the model cannot readjust
its results at the pixel level for better fine details. In this
paper, we make a first attempt at image inpainting training
on a small number of samples. We show how our framework
can refine the results of inpainting through iterative residual
reasoning, which combines CNNs and transformers, as well
as image-level and patch-level discriminators. Our approach
allows for the efficient reuse of all previously predicted pixels
and network parameters, leading to an effective model for the
data-efficient image inpainting task.

3 Methodology
Iterative reasoning, which involves applying underlying com-
putations to the outputs of previous reasoning steps repeatedly,
has the potential to more accurately and generalizably solve
algorithmic reasoning tasks [19], whereas residual learn-
ing [20, 57] facilitates the progressive optimization of pre-
viously predicted results. By iteratively predicting residual
offsets and reusing previously predicted information within
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Fig. 2 Network architecture of our generator. We show the output number of channels and dimensions for each layer/block at each scale.

the same generator during each reasoning step, our GRIG can
dynamically learn to refine the input image at each step. This
method avoids memorizing the mapping between the inputs
and their ground-truth images, thereby preventing overfitting
and improving visual quality for data-efficient inpainting. In
addition, to efficiently learn the global distribution of images,
we utilize prior knowledge from pre-trained representations
to build a compact classifier as an image-level discriminator
for improving data efficiency. While this classifier excels in
robust feature-based classification, it may not always capture
intricate details. Recognizing this potential problem, we intro-
duce a forged-patch discriminator that is trained to recognize
real and inpainted patches based on the receptive field of the
discriminator. The synergy of two discriminators mitigates the
risk of overlooking fine details while also avoiding overfitting,
a common challenge in data-efficient training.

As Fig. 1 shows, our framework consists of three main parts:
a generator, a projected discriminator, and a forged-patch
discriminator. Given a ground-truth image Igt ∈ Rh×w×3 and
a binary mask M ∈ Rh×w×1 (with 1 for unknown and 0 for
known pixels), the masked image Iin ∈ Rh×w×3 is obtained
as Iin = Igt ⊙ (1 −M), where ⊙ denotes the Hadamard
product. The goal of GRIG is to automatically inpaint a
realistic image ITout ∈ Rh×w×3 with T steps of iterative
reasoning, where T > 1 denotes the iterative reasoning steps
during training. For each t-th iterative residual reasoning step,
a previously inpainted image It−1

out is fed into the generator to
obtain a residual prediction. At the first residual reasoning step
(t = 1), we set I0out = Iin. Then, addition and replacement
operations are performed to produce a new image completion
Itout. Adversarial training is conducted at each iterative step
with the network weights updated accordingly via back-
propagation.

3.1 Network architectures

3.1.1 Generator

Taking the previous iteration’s inpainted results as input,
the generator is designed to combine CNNs and transform-
ers [10, 58, 59] for efficient iterative residual reasoning in
data-efficient image inpainting. The generator Gθg consists
of an encoder, a global reasoning module with a stack of
Restormer’s Transformer blocks [60], and a decoder (see
Fig. 1a). The CNN-based encoder and decoder excel at feature
extraction, whereas the transformer blocks excel at dynamic
attention, global context integration, and generalization. This
combination helps the generator generalize effectively on
small-scale training samples.

Details of our generator network are shown in Fig. 2. To
extract features and enlarge the receptive field for capturing
both informative distant image contexts and rich patterns of
interest, we first stack a convolution layer, several residual
down-sampling blocks [17], and AOT-blocks [48]. The ex-
tracted features are then fed into a Restormer’s Transformer
block stack for global context reasoning. Meanwhile, skip-
layer excitation modules (SLE) [17] are utilized for a shortcut
gradient flow, and skip connections are employed for col-
lecting the multi-resolution feature maps in the decoder. The
decoder is then built using up-sampling blocks [17], AOT-
blocks [48], and a convolution layer. The decoder generates the
intermediate prediction ∆t by utilizing the multi-resolution
feature maps output by the encoder and global reasoning
module. For stable adversarial training, we apply spectral
normalization [61] to all convolution layers of the networks.

At each t-th iterative reasoning step, the inpainted image
from the previous iteration It−1

out and its corresponding mask
M (see Fig. 1a) are fed into a generative network Gθg with the
learnable network parameters θg . Gθg generates the interme-
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diate residual inpainting ∆t = Gθg (I
t−1
out ,M) ∈ Rh×w×3.

Then, the t-th inpainted image Itout is calculated as:

Itout = (It−1
out +∆t)⊙M + Iin ⊙ (1−M). (1)

3.1.2 Projected discriminator

To stabilize GAN training and improve data efficiency, we use
prior knowledge from pre-trained representations to train a
compact classifier for learning the global distribution of small-
scale images. The projected discriminator (see Fig. 1b) learns
to assign high confidence scores to feature maps extracted
from real images while assigning low scores to synthetic ones.
Initially, feature maps are extracted from the input image I

(i.e., Itout or Igt) using a U-net-like projector Pθ̂p
with the

pre-trained network parameters θ̂p. Pθ̂p
is implemented by a

pre-trained EfficientNet-Lite1 [62] with cross-channel mixing
and cross-scale mixing mechanisms [18]. Subsequently, the
projected discriminator Eθe with learnable network param-
eters θe maps the extracted feature maps to a scalar. Here
we selected the discriminator with the largest scale of fea-
ture projections (i.e., removing the other three small-scale
discriminators) from Projected GAN [18].

3.1.3 Forged-patch discriminator

Because the projected discriminator is primarily focused on
extracting global image features for robust classification, it is
possible that some fine detail features may be overlooked in
these projected features. To help the generator produce faithful
fine-grained textures and avoid overfitting in data-efficient
training, we propose a forged-patch discriminator that learns
to identify real and inpainted patches based on the receptive
field [63] of the discriminator.

As shown in Fig. 1c, the forged-patch discrimination net-
work Dθd with learnable network parameters θd learns to
recognize real or forged image patches from a given image
I (i.e., Itout or Igt). The discriminator Dθd maps I to a pre-
diction map, where each unit indicates a confidence score for
each image patch based on the receptive field. In this work,
we adopted the network architecture for Dθd from Patch-
GAN [64]. The patch-level receptive field in neural networks
has also been studied as a means of overfitting avoidance in
interactive video stylization [65] and improving diversity and
generalizability in image generation [66].

3.2 Objective functions

GRIG is trained to optimize the learnable network parameters
θg , θe, and θd using the objective functions explained below.

3.2.1 LPIPS loss
At each iterative reasoning step, we use the Learned Perceptual
Image Patch Similarity (LPIPS) metric [67] to constrain the
perceptual similarity between the inpainted image Itout and
the ground-truth image Igt:

Llpips(θg) = (2)∑
l

1

HlWl

∑
u,v

∥∥wl ⊙ (Fl(I
t
out)u,v − Fl(Igt)u,v)

∥∥2
2
,

where Hl and Wl represent the height and width of the feature
map for layer l, respectively, u and v are spatial indices in the
feature maps, wl is the weight assigned to the feature map for
layer l, F (·) is the pre-trained perceptual feature extractor,
Fl(·) is the feature map for layer l; we use VGG-16 in our
work [68]. This can assist our generative network in learning
to maintain higher visual quality.
3.2.2 Projected adversarial loss
For fast convergence, the projected adversarial loss utilizes
pre-trained classification models to extract prior knowledge
(see Fig. 1b). We employ the hinge loss [18] to optimize
the projected discriminator Eθe and generative network Gθg ,
respectively. The objective function can be formulated as:

LE
adv(θe) = EIgt [ReLu(1− Eθe(Pθ̂p

(Igt)))]

+ EIt
out

[ReLu(1 + Eθe(Pθ̂p
(Itout)))],

LG
adv(θg) = −EIt

out
[Eθe(Pθ̂p

(Itout))].

(3)

The projected discriminator is constrained to assign low scores
to inpainted images and high scores to real images, while the
generator Gθg is supervised by the projected discriminator
to inpaint the masked input based on the distribution of real
images.
3.2.3 Adversarial forged-patch loss
As shown in Fig. 1c, we use the forged-patch discriminator to
distinguish forged patches from real patches in a given image.
We achieve this by constructing the corresponding label map
X ∈ Rh′×w′ to supervise the discriminator. Specifically, we
partition I and M into h′ × w′ pairs of partially overlapping
patches (Ri,j and M i,j) based on the receptive field of forged-
patch discriminator Dθd . Here, 1 ⩽ i ⩽ h′ and 1 ⩽ j ⩽ w′

are horizontal and vertical indices, and the sizes of Ri,j and
M i,j are equal to the receptive field N ×N . The label map
is expressed as follows:

Xi,j =

{
0 if ∥M i,j∥0 = 0;

1 otherwise,
(4)

where ∥M i,j∥0 is defined as the L0 norm of the sub-region
mask M i,j . If ∥M i,j∥0 is not zero, it indicates that there
are some masked pixels in this sub-region mask, and the
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Ground-truth Masked PatchGAN HM-PatchGAN SM-PatchGAN Ours

Fig. 3 Differences between the discriminators of PatchGAN, HM-PatchGAN, SM-PatchGAN, and our algorithm. The boxes represent
patches with the size of the discriminator’s receptive field (left two images) and corresponding projected positions (right four images) in the
resultant label maps over the (red) masked and (green) unmasked regions; Pixel values in the label maps indicate labels for fake (white) and
real (black) patches.

image patch Ri,j contains inpainted pixels. Thus, we set
Xi,j = 1, which means that the sub-region Ri,j is a forged
patch. Otherwise, it is a real patch. The hinge version of
adversarial forged-patch loss is expressed as:
LD
patch(θd) = EIgt [ReLu(1−Dθd(Igt))]

+ EIt
out

[ReLu(1−Dθd(I
t
out))⊙ (1−X)]

+ EIt
out

[ReLu(1 +Dθd(I
t
out))⊙X],

LG
patch(θg) = −EIt

out
[Dθd(I

t
out)⊙X].

(5)
Fig. 3 illustrates the differences between the proposed

forged-patch discriminator and other closely related discrimi-
nators. PatchGAN’s discriminator [64] directly assigns all
patches in inpainted images as fake patches, which can con-
fuse the discriminator when extracted patches do not have
any generated pixel. HM-PatchGAN and SM-PatchGAN [48]
aim to segment synthesized patches of missing regions ac-
cording to inpainting masks. Since the inpainting masks have
to be downsampled first to agree with the spatial size of
the discriminator’s output, the constraints around the mask
boundaries may be unclear. For example, downsampling
inpainting masks results in information loss of the precise
location of inpainted pixels. SM-PatchGAN tries to identify
the generated and real patches, whereas our discriminator
goes one step further to consider whether generated pixels are
consistent with surrounding real pixels in a given patch. Our
discriminator constructs the label map based on the receptive
field and treats all patches with any inpainted pixels as fake
patches, which gives more constraints than PatchGAN and
SM-PatchGAN.
3.2.4 Total objective
The total training objective of the generator is expressed as:

LG
total = λlpipsLlpips + λadvLG

adv + λpatchLG
patch, (6)

where λlpips, λadv, and λpatch weight corresponding losses.
During training, we alternately optimize parameters θg, θe,
and θd.

Algorithm 1 GRIG training procedure
1: while Gθg , Eθe , and Dθd have not converged do
2: Sample batch images Igt from the training set
3: Create random masksM for Iin
4: Get inputs Iin ← Igt ⊙ (1−M)

5: Set inputs I0out ← Iin
6: for iterative residual reasoning step t = 1 to T do
7: Get ∆t ← Gθg

(
It−1
out ,M

)
8: Get Itout ← (It−1

out +∆t)⊙M+ Iin ⊙ (1−M)

9: Update Gθg with LG
total

10: Update Eθe with LE
adv

11: Update Dθd with LD
patch

12: end for
13: end while

3.3 Iterative residual reasoning

The iterative residual reasoning for image inpainting can
be formulated as an optimization process over adversarial
generative networks. This enables the generator to implicitly
learn to leverage previously predicted results and focus on
residual information in order to achieve high quality and
better generality.

We introduce a generative networkGθg (I
t−1
out ) as an explicit

function to predict residual information (see Eq. 1). At each
iterative reasoning step t, the generator Gθg is trained to
maximize the confidence values of Eθe(I

t
out) and values

in the prediction map of Dθd(I
t
out) while minimizing the

perceptual similarity difference between Itout and Igt. Thus,
θg is solved by θg = argminθgL

G
total. Simultaneously, Eθe

and Dθd are trained to distinguish images (fake or real)
and patches, respectively, where θe = argminθe LE

adv and
θd = argminθd LD

patch. The generative network Gθg directly
predicts the residual information while its parameters θg are
supervised by the discriminators as well as Igt. Pseudocode
for the GRIG training procedure is given in Algorithm 1.
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Table 1 Details of the ten small-scale and four large-scale image
datasets.

Type Dataset # Training set # Test set

Sm
al

l-s
ca

le

CHASE 18 10
Shell 48 16
Skull 72 25

Anime 90 30
Fauvism 94 30

Moongate 106 30
Cat 120 40
Dog 309 80

Pokemon 633 200
Art 750 250

La
rg

e-
sc

al
e CelebA-HQ 28K 2K

FFHQ 60K 10K
PSV 14.9K 100

Places365 1.8M 36.5K

4 Experiments
4.1 Experimental setting

Python and PyTorch were used to build the proposed frame-
work. We set λlpips = 1.5, λadv = 1, λpatch = 1, and T = 3

for all experiments in both training and testing phases, unless
otherwise specified. We used the Adam optimizer with first
momentum coefficient β1 = 0.5, second momentum coeffi-
cient β2 = 0.999, and learning rate 0.0002. Our masks were
created with the CMOD mask generation algorithm [12]. Our
generator contains 31.76M parameters and achieves around 21
FPS for each residual reasoning step on an NVIDIA GeForce
RTX 2080 GPU with 8 GB memory.

We compared GRIG to various state of the art image
inpainting methods: Globally&Locally (G&L) [36], Contex-
tual Attention (CA) [40], Partial Convolutions (PConv) [42],
GMCNN [33], Gated Convolution (GConv) [13], Recurrent
Feature Reasoning (RFR) [15], AOT-GAN (AOT) [48], Co-
mod-GAN (CMOD) [12], Lama [7], MAT [8], FcF [56],
TFill [49], and ZITS [44]. We also compared GRIG to an
inpainting model (Projected) based on the light-weight Pro-
jected GAN [18] to further demonstrate the superiority of
GRIG for data-efficient image inpainting. The publicly avail-
able MMEditing framework [69], an open-source image and
video editing toolbox based on PyTorch, implements the mod-
els of G&L, CA, PConv, and GConv. We used the authors’
codes for GMCNN, RFR, AOT, Lama, MAT, FcF, TFill,
and ZITS. We used the authors’ TensorFlow-based code to
create a PyTorch-based version of CMOD. To implement the
Projected model, we added a mirrored encoder of Projected
GAN with skip connections and perceptual similarity Llpips.
This Projected model was created using PyTorch with the
same hyper-parameters as GRIG with λlpips = 1.5.

Experiments were conducted on ten small-scale datasets

(CHASE [70], Shell [17], Skull [17], Anime [17], Fau-
vism [17], Moongate [17], Cat [71], Dog [71], Pokemon
(pokemon.com), and Art (wikiart.org)) and four large-scale
image datasets (including CelebA-HQ [72], FFHQ [73], Paris
Street View (PSV) [74], and Places365 [75]). Details of the
sizes of the datasets are given in Table 1. We used the origi-
nal training and testing splits from the PSV and Places365
datasets, while other datasets were split using random sam-
pling. To ensure fairness, we used the same training/testing
splits for all experiments.

All images were resized to a resolution of 256× 256. All
compared models were retrained on the datasets mentioned
in the paper, using a batch size of 8, unless otherwise noted.
During testing, various irregular masks with different mask
ratios [42] and a fixed center 25% (128 × 128) rectangu-
lar mask were used to simulate different situations for all
experiments. All methods in our evaluation replaced the
unmasked known regions with the original image. All models
were trained and tested on NVIDIA V100 GPUs (with 32 GB
memory).

Since L1 distance, PSNR, and SSIM all heavily pre-
fer blurry results [12], we used Fréchet inception distance
(FID) [76] and LPIPS metrics for quantitative evaluation
following established practice in recent literature [7].

4.2 Comparison on small-scale datasets

To evaluate the performance on ten small-scale datasets
(see Table 1), all models were trained with 400, 000 image
batches. We implemented the early-stopping technique for
each method, ensuring that each model is adequately trained
without overfitting and achieved optimal performance for eval-
uation. Fig. 4 and Fig. 5 quantitatively compare GRIG to the
other state of the art inpainting methods on the ten small-scale
datasets. To compare the performance of image inpainting,
various irregular masks with different mask ratios [42], as
well as a fixed center 25% (128×128) rectangular mask, were
used to simulate various scenarios. In the small-scale setting,
differentiable data augmentation [77] was applied for all com-
pared methods when sampling images in the training phase.
As Fig. 4 and Fig. 5 show, GRIG outperforms all baselines in
terms of FID and LPIPS metrics by large margins on most
benchmarks for various kinds of masks. For most datasets,
significant gains were obtained by our method. Notably, for a
50-60% mask ratio, GRIG achieves a relative improvement of
FID to the second-best methods of 9.12% (CHASE), 13.98%
(Shell), 1.26% (Skull), 12.65% (Anime), 4.06% (Fauvism),
14.86% (Moongate), 6.64% (Cat), 16.40% (Dog), and 1.60%

(Art).
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Fig. 6 Results of GRIG and other state of the art image inpainting methods on small-scale datasets (CHASE, Shell, Skull, Anime, Fauvism).
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Fig. 7 Results of GRIG and other state of the art image inpainting methods on small-scale datasets (Moongate, Cat, Dog, Pokemon, Art).
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LPIPS evaluation metrics. In each graph, the horizontal axis indicates mask ratios; ‘Fixed’ denotes the fixed center 25% rectangular mask.
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Fig. 6 and Fig. 7 present inpainted results for the compared
methods. It reveals that most methods fail to produce plausible
contents for datasets with fewer than 100 training samples (for
example, CHASE, Shell, Skull, and Anime) due to overfitting
to features and patterns from a small number of samples.
When trained on datasets with more than 500 samples (such
as Pokemon and Art), some methods may be able to fill more
semantic content within masked areas. However, artifacts
can still be seen under close inspection. When the masked
area is large, RFR is prone to producing repetitive image
patches in inpainted regions, and while AOT, Lama, and
ZITS can inpaint structures in missing regions, they leave
artifacts in fine detail. We also noticed that Lama and ZITS
have similar blurring phenomena in the inpainted regions
when trained on small-scale data, which may be because
the Fast Fourier Convolution [78] (FFC) overfits the limited
global repeating patterns [56], harming subsequent feature
extraction. CMOD, MAT, and TFill tend to overfit the training
data due to their large numbers of learnable parameters.
Projected GANs can handle the semantic structure, but they
may introduce color inconsistency around mask boundaries.
By combining the benefits of FFC and stochasticity, FcF
shows robust performance on both textural and structural
image inpainting. Fig. 4, Fig. 5, Fig. 6, and Fig. 7 demonstrate
that GRIG can achieve better performance on quantitative
metrics and visual quality, even though our method has more
learnable parameters (31.76M) than those of GConv (4.0M)
and is trained on limited samples. GRIG demonstrates strong
generalization capabilities in various small-scale datasets with
differing numbers of training samples, and produces images
with higher visual quality.

We believe that there are three reasons for the better gen-
eralization performance and inpainting quality achieved on
data-efficient image inpainting. Firstly, our iterative residual
reasoning strategy enables the generator to use informa-
tion learned in previous iterations while also increasing the
diversity of inputs to improve performance. Secondly, the
self-attention mechanism in Transformers [10] has advan-
tages in leveraging existing information for further context
reasoning. In our generator, the encoder and decoder are used
to extract local features, while the Restormer Transformer
blocks [60] are used for global context reasoning. Thirdly,
the projected discriminator and forged-patch discriminator,
with 2.829M and 2.765M learnable parameters, respectively,
help improve the generality of our method. The projected
discriminator focuses on images at the semantic level based
on the generality of pre-trained features. The forged-patch
discriminator focuses on learning patch-level consistency to

capture patch statistics and distinguishing between real and
inpainted patches to prevent overfitting by avoiding the need
to memorize the entire image.

4.3 Comparison on large-scale datasets

We also compared our method to the same inpainting methods
on four large-scale datasets. All methods were trained with
their default settings to ensure fair comparisons. Our model
was trained with 1, 000, 000 image batches on CelebA-HQ,
FFHQ, and PSV, respectively, and 2, 000, 000 image batches
on Places365.

The quantitative results in Fig. 8 show that GRIG out-
performs the majority of the SOTA inpainting methods in
terms of FID and LPIPS metrics on large-scale datasets. In
particular, GRIG achieves the best FID scores on PSV, and the
best LPIPS scores on PSV and Places365. MAT has the best
FID scores on FFHQ and Places365. Overall, GRIG performs
comparably to MAT on the other large-scale datasets while
containing many fewer learnable weights (31.76M) than MAT
(62.0M). Our iterative residual learning effectively assists the
networks in decomposing the inpainting process into multiple
reasoning steps with the progressive refinement of inpaint-
ing results. Moreover, the decoupling of image distribution
learning into image-level and patch-level constraints with
our projected discriminator and forged-patch discriminator
helps our GRIG model achieve excellent performance in both
data-efficient scenarios and large datasets.

Fig. 9 shows a corresponding qualitative performance eval-
uation. It demonstrates that semantic inpainting on large
masks remains difficult for most inpainting methods. RFR
produces repetitive image patches in inpainted regions be-
cause iterative refinement in feature space may overlook fine
details in image space. AOT and CMOD perform well on
these datasets. However, with complex backgrounds, they
struggle with larger masked areas in some cases. MAT and
FcF handle texture and structure inpainting well and gener-
alize well to different types of datasets. Because one-time
inferencing cannot re-adjust inpainted results, complex back-
grounds are likely to have negative impacts on MAT and FcF
inpainting quality. With their multi-stage inpainting processes,
TFill and ZITS utilize Transformer architectures to notably
enhance the visual quality of inpainted pixels. However, their
performance may be influenced when previous networks in
the process do not perform optimally. Because fine details
are easily overlooked in projected features, projection-based
models [18] tend to produce blurred results. Our GRIG can
inpaint plausible contents in complex structures with high
mask ratios.
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Fig. 9 Visual comparison of GRIG and state of the art image inpainting methods on large-scale datasets.
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Fig. 10 User study results on the FFHQ and PSV datasets using
state of the art methods (Lama, MAT, TFill, and ZITS). We give
percentages of cases in which each method is ranked first over others.

Table 2 User study results: average rankings of compared methods
on the FFHQ and PSV datasets. Bold indicates best results.

Dataset Lama MAT TFill ZITS GRIG
FFHQ 2.88 3.16 3.10 2.99 2.87
PSV 2.97 3.13 3.25 3.39 2.26

We conducted a user study using various state of the art
methods (Lama, MAT, TFill, and ZITS) on the FFHQ and PSV
datasets to demonstrate GRIG’s inpainting performance on
large-scale datasets. For each dataset, we randomly sampled
100 images from the testing set, then randomly selected and
assigned 20 of those images to each participant. Each question
contained a masked image, a ground-truth image, and shuffled
inpainted images from the five compared methods. The users
were asked to rank the compared methods based on visual
quality and realism. We recruited 31 participants, totaling
620 votes for each method on each dataset.

Fig. 10 shows the percentage of time each method achieved
the top rank on the FFHQ and PSV datasets. Our GRIG had
the highest percentages at 25.48% on FFHQ and 40.81% on
PSV. Table 2 displays the average rankings for each compared
method. All average rankings are within the range of [2.0,
3.5], indicating comparable performance for these methods.
Notably, our GRIG had the best average rankings on FFHQ
and PSV, of 2.87 and 2.26 respectively. The user study results
show that our GRIG produces high-quality image inpainting
results.

4.4 Comparison on various few-shot settings

We conducted comparisons on various few-shot settings on
small-scale and large-scale datasets. The term “n-shot” means
that n images in each training set in Table 1 were selected for
training and the test sets were kept unchanged.

The quantitative results of FID scores are shown in Fig. 11,
Fig. 12, Fig. 13, Fig. 14, Fig. 15, Fig. 16, Fig. 17, and Fig. 18.
FID and LPIPS scores decrease as the number of training

samples increases (e.g., 50-shot images), implying that more
training samples could improve inpainting quality. We further
calculated the mean scores of FID and LPIPS across all
masked ratios and few-shot settings for each dataset, as shown
in Table 3. It highlights our GRIG’s superiority in few-shot
settings. For example, when trained on the Dog dataset, our
GRIG achieved a mean FID score of 68.02, indicating a
17.18% relative improvement over the second-best method
FcF (with 82.13). The results demonstrate that our method
can improve the performance on few-shot scenarios.

Fig. 19 presents visual comparisons on various few-shot
settings. The results reveal that GRIG achieves greater visual
fidelity compared to the SOTA methods. For instance, when
trained on 30 and 50 samples, GRIG produces sharp structural
and clear texture contents, while compared methods show
more blurry results. Fig. 20 presents more inpainted examples
of our GRIG. The quality of inpainted images drops quickly
when models were trained on fewer samples. For example,
models trained on 5-shot images are unable to inpaint semantic
structures within masked areas; while models trained on 10-
shot and 30-shot images can inpaint more plausible contents,
some output results still show obvious color inconsistency
around mask boundaries. A similar phenomenon is also shown
on CMOD and MAT in Fig. 6. In contrast, models trained on
50-shot settings produce sharper results with more complex
textures and rich colors. We can find that the more training
samples the models trained on, the better their performance
on both quantitative and qualitative evaluations. Our method
produces more plausible contents when trained on few-shot
settings.

4.5 Network complexity of recent SOTA methods

In Table 4, we show the model complexity of our GRIG and
the state of the art methods in terms of number of parameters,
and FLOPs needed for a resolution of 256× 256. Our GRIG
model achieves optimal efficiency with the lowest number of
FLOPs at an iterative reasoning step ofT = 1, and is ranked as
the fourth most efficient at T = 3. While our model does not
have the fewest parameters, its strong performance on small-
scale datasets highlights a different strength. This success is
not due to a reduced risk of overfitting from fewer parameters;
instead, it is attributable to the effectiveness of our proposed
framework for data-efficient image inpainting. The robust
capacity of our network also plays a pivotal role in securing
competitive results on larger-scale datasets. Additionally,
our superior image inpainting performance on small-scale
datasets, large-scale datasets, and various few-shot settings
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Fig. 12 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 10-shot setting
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Fig. 13 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 30-shot setting
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Fig. 14 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 50-shot setting
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Fig. 15 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 5-shot setting
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Fig. 16 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 10-shot setting
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Fig. 17 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 30-shot setting
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Fig. 18 Quantitative comparisons between models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on the 50-shot setting
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Table 3 Comparisons of mean FID and LPIPS scores across all mask ratios and few-shot settings for each dataset. Bold indicates best
results.

Metrics Methods Shell Skull Anime Fauvism Moongate Cat Dog Art CelebA-HQ PSV

FI
D

RFR 127.31 144.71 83.72 183.50 138.11 104.10 109.63 103.29 31.92 86.17
AOT 112.06 140.73 80.66 160.93 115.87 85.38 95.46 87.04 26.99 82.93

GMCNN 139.87 192.34 130.63 201.42 164.46 111.20 128.53 106.64 49.19 113.25
MAT 146.67 147.96 101.18 185.71 142.61 104.36 129.27 85.53 46.63 88.87
FcF 111.09 130.80 81.87 157.42 110.28 63.21 82.13 76.01 23.65 73.67
TFill 176.16 190.69 122.77 196.17 149.54 134.01 156.56 106.38 52.08 122.49
ZITS 190.74 193.72 108.92 197.22 134.08 125.43 147.07 106.96 68.22 117.37
Ours 100.12 114.77 66.49 140.03 105.21 53.45 68.02 74.83 19.27 69.17

LP
IP

S

RFR 0.2163 0.2122 0.2074 0.2652 0.2426 0.2413 0.2279 0.2508 0.2093 0.2391
AOT 0.1875 0.2141 0.2074 0.2610 0.2385 0.2449 0.2305 0.2547 0.1992 0.2274

GMCNN 0.2191 0.2292 0.2307 0.2824 0.2785 0.2530 0.2496 0.2550 0.2344 0.2492
MAT 0.2190 0.2296 0.2416 0.2683 0.2576 0.2766 0.2677 0.2509 0.2402 0.2338
FcF 0.2842 0.2442 0.2337 0.2448 0.2374 0.2188 0.2061 0.2334 0.1990 0.2172
TFill 0.2085 0.2034 0.2478 0.3147 0.2688 0.2989 0.2923 0.2867 0.2480 0.2867
ZITS 0.2998 0.2296 0.2614 0.3108 0.2582 0.3135 0.3001 0.2709 0.2722 0.2753
Ours 0.1773 0.2028 0.1869 0.2266 0.2106 0.2023 0.1983 0.2298 0.1774 0.2051

Table 4 Network complexity of various image inpainting methods, including GRIG. Bold indicates best.
Method RFR AOT CMOD Lama MAT FcF TFill ZITS GRIGT=1 GRIGT=3

# Parameters (M) 30.59 15.20 79.17 27.05 62.0 70.33 109.45 68.16 31.76 31.76
FLOPs (G) 206.17 72.88 90.25 42.87 139.11 40.26 45.45 270.08 20.47 61.41

Table 5 Ablation study providing FID scores for (A) GRIG with-
out the forged-patch discriminator, (B) GRIG without the projected
discriminator, (C) GRIG with forged-patch discriminator replaced
by PatchGAN’s discriminator, (D) GRIG with forged-patch discrim-
inator replaced by SM-PatchGAN’s discriminator, (E) GRIG with
Transformer blocks replaced by down-sampling and up-sampling
blocks, and full GRIG . Results were evaluated on 50–60% mask
ratios. Bold indicates best results.

Dataset (A) (B) (C) (D) (E) GRIG
CHASE 73.96 57.00 56.89 64.17 59.16 55.84
Anime 77.49 68.56 66.03 71.12 69.96 65.05
Dog 65.33 62.92 61.17 59.83 61.87 58.49
Art 96.84 79.19 79.16 78.83 77.35 77.32

CelebA-HQ 10.14 8.92 8.41 8.96 8.62 8.06
PSV 60.53 61.76 59.62 61.07 61.45 58.08

demonstrate that GRIG shows a good trade-off between image
inpainting quality and computational resources.

4.6 Ablation study

4.6.1 Ablation study on components

We further analyzed the effects of the components of GRIG.
To analyze the effects of discriminators in GRIG, we in-
dividually removed each discriminator and replaced our
forged-patch discriminator with PatchGAN [64] and SM-
PatchGAN [48], in turn. All compared discriminators used
the same network architecture of 70×70-sized PatchGAN. To
demonstrate that incorporating Transformer blocks can further
improve the inpainting quality, we tested replacing Trans-
former blocks [60] with down-sampling and up-sampling

blocks [17]. We evaluated inpainting performance to show the
impact of these changes. Table 5 shows quantitative results
of the compared variants. GRIG outperforms all variants in
terms of FID score on various small-scale and large-scale
datasets. The FID scores increase dramatically when remov-
ing either the forged-patch discriminator (model A) or the
projected discriminator (model B). Replacing our forged-
patch discriminator with other discriminators (models C and
D) also leads to higher FID scores. These results indicate
that removing our discriminators or replacing the proposed
forged-patch discriminator causes a significant degradation in
inpainting performance. The best FID scores of our GRIG on
various datasets validate the effectiveness of our forged-patch
discriminator for performance boosting and mitigating over-
fitting on small-scale image inpainting. Additionally, without
the global context integration of Transformers (model E),
the model performs worse. Our generator leverages both
advantages of shallow feature extraction and global context
reasoning to enhance the visual quality of inpainted images.

Fig. 21 shows corresponding visual results. When remov-
ing the forged-patch discriminator, the inpainted results show
noticeable artifacts around mask boundaries, and the pro-
duced textures are blurred, as shown in Fig. 21(A). When
the projected discriminator is removed, both quantitative
performance and visual quality suffer. It is more difficult to
maintain the semantic structure of outputs in this case, e.g.,
the asymmetrical Anime face, as shown in Fig. 21(B). The
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Fig. 19 Visual comparison of results of models (RFR, AOT, GMCNN, MAT, FcF, TFill, ZITS, and ours) trained on various few-shot
settings.
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Fig. 20 Visual results of our GRIG models trained on various few-shot settings. “All” means the training sets mentioned in Table 1.
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Ground-truth Ours(E)(D)(C)(B)(A)Masked

Fig. 21 Examples from the ablation study with (A) GRIG without the forged-patch discriminator, (B) GRIG without the projected
discriminator, (C) GRIG’s forged-patch discriminator replaced by PatchGAN’s discriminator, (D) GRIG’s forged-patch discriminator
replaced by SM-PatchGAN’s discriminator, (E) GRIG with Transformer blocks replaced by down-sampling and up-sampling blocks, and
full GRIG (ours).
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Fig. 22 Inpainting performance at each iterative reasoning step. For each group: Above-left: masked image. Below-left: input binary mask.
Above-right: inpainted images. Below–right: heatmaps of residual outputs ∆t. Colors red–blue in heatmaps represent higher–lower change
for the corresponding pixel.

alignment between generated pixels and known pixels may be
influenced when we replace our forged-patch discriminator
with a Patch-GAN discriminator, as shown in Fig. 21(C).
When we replace our forged-patch discriminator with an SM-
PatchGAN discriminator, it can create plausible content, but
consistency with known areas is poor, as seen in Fig. 21(D).
After replacing Transformer blocks with CNN-based blocks,
the trained model excels at inpainting texture and detailed con-
tents, but may not be good at capturing structure information,
as shown in Fig. 21(E). GRIG shows the best performance
on both quantitative and qualitative measures.

Table 6 FID scores for models trained with various numbers of
iterative reasoning steps T . Results were evaluated on 50–60% mask
ratios. Bold indicates best results.

Dataset T = 1 T = 3 T = 5 T = 7 T = 9

CHASE 62.76 55.84 56.58 53.39 57.84
Anime 69.55 65.05 68.05 66.50 69.20

Dog 63.64 58.49 59.66 62.09 61.47
Art 78.40 77.32 78.04 78.29 78.23
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Fig. 23 Comparisons of FID scores for each training iteration on Anime (left) and Dog (right) datasets. Results were evaluated on a fixed
center 25% rectangular mask.

4.6.2 Number of iterative reasoning steps

To evaluate the effectiveness of the iterative reasoning in
GRIG, we varied the number of iterative reasoning steps
T and tested corresponding FID scores on 50–60% mask
ratios: see Table 6. Each test used the same number of
iterative reasoning steps as the corresponding training phase.
Compared to models trained for T = 1, models trained for
T > 1 have large performance gains. For example, on the
CHASE dataset, the model trained on T = 3 has 6.92 lower
FID score than that trained for T = 1 (55.84 vs 62.76).
When T > 5, the performance gains saturate or decrease
to some extent, but the inpainting performance is still better
than for T = 1 in most cases. The results indicate that GRIG
can produce satisfactory inpainting outcomes in the early
steps, while the residual offsets may fluctuate in subsequent
steps, potentially leading to variations in inpainting quality.
However, GRIG effectively balances the number of steps and
the improvement in inpainting quality, achieving superior
performance in the data-efficient image inpainting task. In
this paper, we used T = 3 to strike a balance between
computational cost and visual quality. Fig. 22 visualizes the
residual output ∆t for each step t for the model trained with
T = 3. The masked images were gradually inpainted. The
model prioritizes semantic features in the early steps and fine
details in the later steps.

Fig. 23 shows an evaluation of GRIG on a fixed center 25%
rectangular mask for models trained with T = 1, 3, 5, 7, 9,
respectively. The FID scores on Anime and Dog datasets
show that models trained with more iterative reasoning steps
T converge faster than those with fewer T , and models
trained with T = 1 do not readily converge. Specifically,
models trained with T > 1 converge for around 10, 000

image batches, whereas models trained with T = 1 are far
from convergence and fluctuate drastically even after 10, 000

image batches. This shows that our framework can effectively
help networks to converge faster.

5 Conclusions, limitations, and future work
We have taken a first step toward solving data-efficient image
inpainting in this paper. By introducing iterative residual
reasoning with decoupled image-level and patch-level dis-
criminators, we have presented a novel data-efficient gen-
erative residual image inpainting framework. The proposed
generator effectively utilizes CNNs for feature extraction and
Transformers for global reasoning. To assist the generative
network in learning image fine details, a forged-patch discrim-
inator was introduced. Furthermore, we have established new
state-of-the-art performance on multiple small-scale datasets,
and extensive experiments have demonstrated the efficacy of
the proposed method.

Our method has some limitations. The approach can effec-
tively perform high-fidelity image inpainting on small-scale
datasets. However, GRIG cannot directly utilize conditional
information for guidance-based image inpainting. Introducing
a more sophisticated scheme or module to guide the inpainting
process would be interesting for controllable small-scale im-
age completion. Moreover, GRIG is not specialized in diverse
image inpainting. Using a mapping network to embed random
style codes into the generator could be a good solution for
diversity of data-efficient image inpainting.
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