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Fig. 1. Our proposed FragmentDiff accurately assembles objects from randomly posed fractured pieces by diffusing in the pose parameter space.

Fractured object reassembly is a challenging problem in computer vision
and graphics with applications in industrial manufacturing and archaeology.
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Traditional methods based on shape descriptors and geometric registra-
tion often struggle with ambiguous features, resulting in lower accuracy.
Recent data-driven methods are inherently affected by the representation
and learning ability of the trained models. To address this, we propose a
novel approach inspired by diffusion models and transformers. Our method
applies diffusion denoising via a transformer to predict the pose parameter
of each fragment, taking advantage of their global feature correlation and
pose prior learning abilities. We evaluate our approach on a fractured object
dataset and demonstrate superior performance compared to state-of-the-art
methods. Our method offers a promising solution for accurate and robust
fractured object reassembly, advancing the field in complex shape analysis
and assembly tasks.
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1 Introduction
Fractured object assembly is a fundamental task in computer vision
and graphics. It plays a crucial role in various applications such
as industrial manufacturing, archaeology, object reconstruction,
and cultural heritage preservation. The ability to accurately and
efficiently assemble fragmented objects is essential for restoring
damaged artifacts, optimizing production processes, and understand-
ing complex geometries. By assembling fragmented parts, one can
extract valuable information from the recovered objects, leading to
advancements in quality control, reverse engineering, and historical
artifact analysis. Since the target shape is often unknown, and the
fragmented parts typically have irregular shapes, it is rather chal-
lenging to identify the correct poses of individual parts and align
them accordingly. Therefore, manually solving the problem is often
time-consuming, skill-demanding, and sometimes even impractical
if the number of parts is significant.
With the development of 3D acquisition and shape modeling

techniques, large 3D model datasets such as [Chang et al. 2015; Wu
et al. 2015] emerged and attracted research attention on 3D shape
learning. Other datasets [Mo et al. 2019; Sellán et al. 2022] were
also introduced to benchmark the object reassembly task, which
aims to facilitate data-driven object assembly from their constituent
parts. Early unsupervised assembly methods, such as [Brown et al.
2008; Huang et al. 2006; Papaioannou and Karabassi 2003], focused
on defining and matching hand-crafted features based on the frag-
ment shapes. These methods analyzed the geometric properties
of fragments (e.g., sharp features, curvatures) to solve the relative
positions and orientations between fragments. With the explosion
of data scale and the advancements in machine learning, supervised
methods [Chen et al. 2022; Jones et al. 2021; Li et al. 2020; Narayan
et al. 2022; Zhan et al. 2020] were proposed to address the fractured
object assembly problem. These methods leveraged shape assembly
priors to estimate fragment poses, where features are automatically
learned and correlated from labeled data.

Recently, diffusion-based models [Ho et al. 2020; Song et al. 2021c]
have proved their capability in high-fidelity 2D and 3D content gen-
eration [Poole et al. 2023; Rombach et al. 2022], as well as discrimi-
native tasks such as image and volume segmentations [Baranchuk
et al. 2022; Xing et al. 2023]. By regarding the fragmented parts as a
noisy object and the reassembled complete object as the denoised
one, we model the fractured object assembly as a denoising process,
which has not been well explored. To this end, we propose Fragment-
Diff, a framework that predicts accurate fragment poses for shape
assembly, which contains a complete diffusion denoising pipeline
based on a transformer architecture. In our setting, the signal for
noising and denoising in the diffusion process is the fragment poses
rather than their shapes. Specifically, given a set of fragmented parts
with arbitrary poses broken from a complete object, we first transfer
them to feature embeddings and then feed them as the condition of
the diffusion process, similar to those methods for text-conditioned
image generation. We leverage the learning ability of transformers
to effectively correlate part features for diffusion noise prediction
and part adjacency matrix inferences. To facilitate model training of
the proposed method, we have constructed a dataset composed of
fractured objects based on existing benchmarks [Sellán et al. 2022].

Both quantitative and qualitative evaluations demonstrate that our
model is highly effective and outperforms existing baselines.

In summary, our work makes the following major contributions:

• We present a novel approach that addresses the fractured
assembly problem based on a diffusionmodel and its sampling
and denoising strategy.
• We devise a comprehensive pipeline that utilizes a trans-
former architecture to predict diffusion noises in the parame-
ter space as well as the fragment adjacency matrix.
• We conduct quantitative and qualitative evaluations to vali-
date the effectiveness and superiority of our model.

2 Related Works
Fractured Object Reassembly. Automatic reassembly of fractured

objects has garnered significant research interest in the last decades.
Early research attempts addressed this problem using unsupervised
methods that involved analyzing object fragments with traditional
geometry processing techniques such as shape segmentation, fea-
ture extraction, and shape matching. For 3D solid shape assembly,
[Papaioannou and Karabassi 2003; Papaioannou et al. 2001] made
early contributions of automatically reconstructing objects from
fragmented parts. Subsequent studies addressed more challenging
cases, including assembling parts with intricate geometries and
working on low-quality data. [Brown et al. 2008; Huang et al. 2006;
Koller and Levoy 2006; Shen et al. 2012] were the representatives
that tackled these challenges. Recently, a pairwise part reassembly
method was proposed based on extracting and matching break-
ing curves [Alagrami et al. 2023]. Albeit greatly facilitating the
reassembly process, traditional methods still rely on defining and
matching hand-crafted feature descriptors, which can be easily af-
fected by shape ambiguity (e.g., symmetry, plainness) due to the
lack of consideration of more global shape information.
As an early attempt of learning-based approach, Funkhouser et

al. [2011] utilized regression trees as the classifier to match hand-
crafted features (e.g., thickness, color, convexity) for fragment as-
sembly. More recently, the field of shape assembly has witnessed
significant progress due to the availability of 3D shape benchmarks
with semantic labels, such as [Chang et al. 2015; Mo et al. 2019].
These benchmarks have paved the way for learning-based methods
for reassembling shapes from their semantic parts. Several learning-
based approaches [Jones et al. 2021; Narayan et al. 2022; Zhan et al.
2020] have been proposed to address this problem involving seman-
tic information, leveraging machine-learning techniques to reassem-
ble shapes based on their semantic parts. These methods utilize the
semantic labels of the parts to guide the reassembly process. Besides,
other methods have focused on specific domains, such as [Guo et al.
2022; Willis et al. 2022; Yu et al. 2022], which have presented ap-
proaches explicitly tailored for reassembling CAD models. These
methods take into account the unique characteristics and constraints
of CAD models during the reassembly process.

In contrast to semantic part assembly, [Chen et al. 2022] proposed
a learning-based approach for fractured object reassembly without
relying on part semantics through a transformer-based network
combined with adversarial loss. [Lu et al. 2023] achieved fractured
object assembly using a transformer-based learning method with
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the proposed primal-dual descriptor. [Wu et al. 2023] introduced
the concept of SE(3) equivariance, which helps to improve assembly
accuracy and efficiency, especially for complex assemblies involving
multiple parts. A very recent work [Scarpellini et al. 2024] proposed
a uniform diffusion-based method to assemble puzzles in 2D and 3D
domains following a graph structure. However, this work does not
perform as well in 3D as in 2D, and there is still room for improve-
ment due to the limitation of graph neural networks. Moreover,
to facilitate research in the field, [Sellán et al. 2022] introduced a
large-scale benchmark dataset specifically designed for the fractured
object reassembly task. This dataset also provides a standardized
evaluation framework for assessing the performance of different
reassembly methods.

Point Cloud Registration. This problem aims to align overlapping
point clouds which are often raw data captured by 3D scanners
from different views. Point cloud registration has been extensively
studied. While point registration techniques like RANSAC [Fischler
and Bolles 1981] and Iterative Closest Point (ICP) [Besl and McKay
1992; Chen and Medioni 1991] are widely used for rigid point cloud
registration, the emergence of deep learning drives the research
on differentiable RANSAC [Brachmann et al. 2017] and ICP [Wang
and Solomon 2019] suitable for learning-based tasks. Readers may
refer to existing surveys [Deng et al. 2022; Tam et al. 2013] for a
comprehensive understanding.
Here, we mainly review works that concern low-overlap regis-

tration. These types of works focus on aligning point clouds with
only shallow overlap regions in between, similar to the fractured
object assembly task. Recent works [Huang et al. 2012, 2021; Yan
et al. 2021] addressed the specific challenges posed by point clouds
with small overlapping areas. The key is how to extract feature
points from only the shared interface area for robust alignment.
Our task also targets the alignment of fragmented parts but with
no requirement that there always exist overlaps between parts.

Diffusion Models for Discriminative Tasks. Classic diffusion mod-
els, such as those proposed in [Ho et al. 2020; Sohl-Dickstein et al.
2015], have been successfully applied to generative tasks, produc-
ing high-fidelity results. This impact extends to both 2D and 3D
generation tasks, as demonstrated by works such as [Dhariwal and
Nichol 2021; Rombach et al. 2022; Song et al. 2021c; Vahdat et al.
2021; Zeng et al. 2022; Zhou et al. 2021], where diffusion models are
used for denoising the input representation or in the latent space.
In contrast to the works above, many researchers have adopted

diffusion models for deterministic tasks rather than generative ones.
For instance, [Chen et al. 2020; Tritrong et al. 2021; Voynov and
Babenko 2020; Voynov et al. 2021; Zhang et al. 2021] utilized GAN
models to perform image segmentation. This highlights the po-
tential that generative models can be employed for discriminative
tasks. [Baranchuk et al. 2022] proposed semantic segmentationmeth-
ods based on denoising diffusion models, which effectively capture
high-level semantic information. Subsequent works by [Amit et al.
2021; Wu et al. 2024; Xing et al. 2023] tackled segmentation and
depth estimation problems using diffusion models.
Similar to the usage of generative models above, we formulate

pose prediction using a diffusion-based pipeline, which adapts the

powerful generative model for our challenging fractured object
assembly task.

3 Fractured Object Assembly Task
We formulate the fractured object assembly task as a diffusion prob-
lem. Specifically, given 𝐾 fragmented parts denoted as P = {𝑃𝑖 |𝑖 =
1, 2, ..., 𝐾}, each of which is represented as a point cloud as in [Sel-
lán et al. 2022]. Our objective is to estimate the canonical SE(3)
pose 𝑇𝑖 = {𝑅𝑖 , �̂�𝑖 |𝑅𝑖 ∈ SO(3), �̂�𝑖 ∈ R3} for each part 𝑃𝑖 . The recov-
ered object O can be obtained by combining the transformed parts:
O =

⋃𝐾
𝑖=1 𝑃𝑖 ⊗ 𝑇𝑖 , where ⊗ denotes the pose transformation oper-

ation 𝑃𝑖 ⊗ 𝑇𝑖 = 𝑅𝑖𝑃𝑖 + �̂�𝑖 . By regarding the fragmented parts as a
noisy object in total, the assembly problem can be formulated as a
denoising process to recover poses for the complete object. Different
from previous works which regress the pose 𝑇 directly by neural
networks, we adopt a diffusion model to learn the pose distribution
conditioned on the fragmented parts.

4 Methodology
In this section, we present the proposed diffusion-based pose esti-
mation model FragmentDiff, specifically devised for the fractured
object assembly task. We first give an overview of our model, then
detail the network structure as well as the training procedure and
losses.

4.1 Overview
As shown in Fig. 2, the fragments are first transformed into feature
vectors in the latent space through a point cloud encoder. During
the training phase, we introduce noises to the input poses and train
a transformer as a noise predictor. In addition, each timestep is
encoded into an embedding and combined with the feature vectors
of the fragments as a condition for the transformer, which can effec-
tively process and correlate these feature embeddings. Meanwhile,
we employ the learned fragment features to infer the explicit rela-
tionships among fragments by referring to their adjacency matrix
using a transformer. We recognize its critical role in guiding the
prediction of arbitrary fragment poses by establishing their spatial
relations, which is in line with traditional methods. During the re-
verse diffusion process, the model learns to reconstruct the original
signal (poses) from a noisy sample. It generates new samples by
starting from a random noise input and iteratively removing the
noise until the poses are generated for fragment reassembly.

4.2 Fragment Diffusion
4.2.1 Generic Diffusion Model. The generic Denoising Diffusion
Probabilistic Models (DDPM) [Ho et al. 2020] employ a Markov
chain trained via variational inference to generate samples that
conform to the data distribution within a finite timeframe. The
model encompasses a forward process that incrementally introduces
Gaussian noise to the data, transforming the original data 𝑥0 into a
noised state 𝑥𝑇 . This forward process is defined by:

𝑞(𝑥1:𝑇 |𝑥0) =
𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1),

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ) .

(1)
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Fig. 2. The diffusion-based pipeline of FragmentDiff. Given fragments P of an object O, they are first embedded into latent features F. FragmentDiff then
denoises the poses 𝑥1:𝐾

𝑇
conditioned on F while inferring the spatial relationships between fragments by referring to their adjacency matrix.

Here, 𝛽𝑡 dictates the noise level at each timestep, with the forward
process being meticulously crafted to be reversible by design.
The reverse process is the counterpart to the forward diffusion,

aiming to reconstruct the original data from 𝑥𝑇 . It is a learned
Markov chain that iteratively refines the estimate 𝑥𝑡−1 from the
noised data 𝑥𝑡 at each timestep 𝑡 , with the neural network predicting
the mean 𝜇𝜃 (𝑥𝑡 , 𝑡) and variance Σ𝜃 (𝑥𝑡 , 𝑡) of the conditional distribu-
tion 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ). The reverse process is mathematically described
as:

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ),

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)) .
(2)

During training, the neural network’s parameters 𝜃 are optimized
to effectively denoise the data by reversing the diffusion process,
culminating in the generation of high-quality samples that align
with the data distribution after a number of iterations𝑇 . The training
is often guided by a weighted variational bound that is tailored to
emphasize the reconstruction of more significant noise levels, which
is crucial for the generation of high-fidelity samples.

4.2.2 Our Fragment Diffusion. We model the fractured object as-
sembly task as a generation problem, where we aim to sample poses
from pose distribution 𝑞(𝑥1:𝐾

0 ) under the condition of fragmented
parts 𝑃1:𝐾 using a neural network approximation 𝑝𝜃 (𝑥1:𝐾

0 |𝑃1:𝐾 ).
Following DDPM (Denoising Diffusion Probabilistic Models) [Ho
et al. 2020], a noising process can be defined as:

𝑞(𝑥1:𝐾
𝑡 |𝑥1:𝐾

𝑡−1) := N(𝑥1:𝐾
𝑡 ;

√︁
1 − 𝛽𝑡𝑥1:𝐾

𝑡−1, 𝛽𝑡 I) (3)

where 𝑡 ∈ [0,𝑇 ] is the timestep and 𝛽𝑡 is the schedule at 𝑡 .
By gradually adding Gaussian noise to 𝑥1:𝐾

0 , the final sample 𝑥1:𝐾
𝑇

looks like Gaussian noise. Note that given a timestep 𝑡 , the sample
𝑥1:𝐾
𝑡 could be directly computed without running the whole chain:

𝑥1:𝐾
𝑡 :=

√
𝛼𝑡𝑥

1:𝐾
0 +

√
1 − 𝛼𝑡𝜖 (4)

where 𝜖 ∼ N(0, I) and 𝛼𝑡 :=
∏𝑡
𝑖=0 (1 − 𝛽𝑖 ).

To train the diffusion model, we approximate 𝑞(𝑥1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 ) as

network 𝑝𝜃 (𝑥1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 ). We reverse the noising process to get the

noiseless sample 𝑥0:

𝑝 (𝑥1:𝐾
0 |𝑃1:𝐾 ) := 𝑝 (𝑥1:𝐾

𝑇 )
𝑇∏
𝑡=0

𝑝𝜃 (𝑥1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 , 𝑃1:𝐾 ) (5)

where 𝑝𝜃 (𝑥1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 , 𝑃1:𝐾 ) can be parameterized as a diagonal Gauss-

ian distribution when the step size is small enough. Following [Ho
et al. 2020; Nichol and Dhariwal 2021], we parameterize this distri-
bution by predicting the noise 𝜖 , which is added to a sample 𝑥1:𝐾

𝑡

and the variance
∑

of the distribution. We choose DDPM sampler
to sample the poses of fragments. Please note that there are other
choices for diffusion sampling strategy [Karras et al. 2022; Song et al.
2021a]. We choose the original DDPM sampler only to demonstrate
the effectiveness of using generative models for pose estimation in
the fractured object assembly task.

4.2.3 Network Architecture.

Point Encoder. Webegin by individually processing the fragmented
parts P through a shared point cloud encoder E𝑝 , which produces
their initial latent features F = {𝐹𝑖 | 𝑖 = 1, 2, ..., 𝐾}. To strike a bal-
ance between performance and efficiency, we adopt the Dynamic
Graph CNN (DGCNN) [Wang et al. 2019] as the backbone for extract-
ing point cloud features. The latent vectors extracted by DGCNN
have a dimension of 𝑛 ×𝑊 , where 𝑛 corresponds to the number
of points per fragment and𝑊 represents the feature dimension
per point. For computation efficiency, we further pool the initial
features F into a 1 ×𝑊 feature F̃ for each fragment.

Multi-head Transformer. Encouraged by Point-E [Nichol et al.
2022], we adopt Multi-head Transformer as our diffusion network
𝑝𝜃 (𝑥1:𝐾

𝑡−1 |𝑥
1:𝐾
𝑡 , 𝑃1:𝐾 ). In particular, we convert the rotation matrix

𝑅 ∈ SO(3) of each fragment into �̂� ∈ so(3), which represents 3D
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ALGORITHM 1: Training Procedure of FragmentDiff

input: fracture 𝑃1:𝐾 , poses 𝑥1:𝐾
0 , diffusion model G, and Point encoder E.

output: 𝐿ℎ𝑦𝑏𝑟𝑖𝑑 .
# 𝑥1:𝐾

𝑡 shape: (6,𝐾 )
sample 𝜖 ∼ N(0, 𝐼 ) .
𝑥1:𝐾
𝑡 =

√
𝛼𝑡𝑥

1:𝐾
0 +

√
1 − 𝛼𝑡𝜖

𝜖𝜃 , Σ𝜃 ←− G(𝑥𝑡 , E(𝐹𝑖 ), 𝑡 )
compute 𝐿ℎ𝑦𝑏𝑟𝑖𝑑 according to Equation 6 .
return 𝐿ℎ𝑦𝑏𝑟𝑖𝑑

rotations based on Lie algebra and can be directly outputted by
a neural network. Together with translation �̂� ∈ R3, we obtain a
tensor of shape 𝐾 ×6 for the fragment poses, where 𝐾 is the number
of fragments. All translations and rotations are normalized by the
mean and variance of the whole dateset. The transformer takes
the timestep 𝑡 , individual fragment features F̃1:𝐾 , and noised poses
𝑥1:𝐾
𝑡 as inputs to predict 𝜖𝜃 and Σ𝜃 . More specifically, our diffusion
transformer is designed based on the standard self-cross attention
mechanism, with 16 multi-heads of eight layers, and a width of 1024.

Adjacency Matrix. We have designed an adjacency matrix mod-
ule that takes the 𝐾 ×𝑊 point cloud features F̃ outputted by the
point encoder and feeds them into a simple transformer module
to predict a 𝐾 × 𝐾 adjacency matrix. Subsequently, we train the
adjacency matrix module by minimizing the differences between
the predicted adjacency matrices and those ground truth ones (see
next subsection). With the help of this module, our model can better
learn the spatial relations between fragments, thus benefiting pose
estimation.

4.2.4 Optimization Objectives. Following [Nichol and Dhariwal
2021], we utilize a hybrid loss consisting of a denoising loss and
a variation lower bound to train the transformer-based diffusion
model:

𝐿ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐸𝑡,𝑥1:𝐾
0 ,𝜖 [∥𝜖 − 𝜖𝜃 (𝑥

1:𝐾
𝑡 , 𝑡, F̃1:𝐾 )∥] + 𝜆𝐿𝑣𝑙𝑏 (6)

where the variation lower bound 𝐿𝑣𝑙𝑏 is computed as follows:

𝐿𝑣𝑙𝑏 =

𝑇∑︁
𝑖=0

𝐿𝑖 (7)

𝐿0 = − log𝑝𝜃 (𝑥1:𝐾
0 |𝑥

1:𝐾
1 ) (8)

𝐿𝑡−1 = 𝐷𝐾𝐿 (𝑞(𝑥1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 , 𝑥1:𝐾

0 ) | |𝑝𝜃 (𝑥
1:𝐾
𝑡−1 |𝑥

1:𝐾
𝑡 )) (9)

𝐿𝑇 = 𝐷𝐾𝐿 (𝑞(𝑥1:𝐾
𝑇 |𝑥

1:𝐾
0 ) | |𝑝 (𝑥

1:𝐾
𝑇 )) (10)

Note that 𝐿𝑇 does not depend on 𝜃 . It is close to zero if the for-
ward noising process fully destroys the data distribution. The above
denoising process is briefly depicted in Algorithm 1
Adjacency Loss. This loss function aims to quantify the differ-

ence between the predicted adjacency matrix 𝐴𝑝𝑑 and the ground
truth adjacency matrix 𝐴𝑔𝑡 , which is measured based on the binary
cross entropy suitable for binary distributions:

𝐿𝑎𝑑 𝑗 (𝐴𝑝𝑑 , 𝐴𝑔𝑡 ) = −
𝐾∑︁
𝑖=1

𝐾∑︁
𝑗=1
[𝐴𝑖 𝑗𝑔𝑡 log(𝐴𝑖 𝑗

𝑝𝑑
) + (1 −𝐴𝑖 𝑗𝑔𝑡 ) log(1 −𝐴𝑖 𝑗

𝑝𝑑
)]

(11)

10 pieces 18 pieces 37 piecesTotal pieces
Number

Fig. 3. Example of tiny fragments generated using the Breaking Good
methodology [Sellán et al. 2023]. It is observed that the frequency of such
diminutive pieces increases with the number of fragments.

where 𝐴𝑝𝑑 ∈ {0, 1}𝐾×𝐾 is the predicted adjacency matrix, 𝐾 is
the number of fragments, 𝐴𝑔𝑡 ∈ {0, 1}𝑁×𝑁 is the ground truth
adjacency matrix, 𝐴𝑖 𝑗

𝑝𝑑
and 𝐴𝑖 𝑗𝑔𝑡 are elements from the predicted and

ground truth adjacency matrices, respectively.

5 Experiments

5.1 Data Preparation
To facilitate model training and evaluation, we introduce a new
dataset tailored to the proposed fractured object assembly task based
on the Breaking Bad benchmark for fractured object reassembly [Sel-
lán et al. 2022]. Following other baselines, we primarily utilize the
"everyday" subset of the Breaking Bad dataset for training, as the
object categories represented in this subset are everyday objects
commonly encountered in fractured object assembly scenarios. Each
object category in our dataset contains multiple instances that vary
in scale and pose.
To obtain the fractured objects, we utilized the scripts provided

by [Sellán et al. 2022] to extract the fractured objects as original
mesh files for further processing. The Breaking Bad dataset offers
various shape categories, featuring 543 model instances and over
54,000 fractured patterns with different numbers in the ‘everyday’
subset. To ensure the dataset’s suitability and avoid extreme cases,
such as tiny pieces that are challenging to sample or highly sensitive
to noise or point perturbation, we pass fractured objects through a
filter based on the fragment volume as follows.

If one fragment is smaller than 0.1% of the volume of the complete
object, it will not be considered for the reassembly. Such tiny frag-
ments are commonly seen in the Breaking Bad dataset (see Fig. 3),
and their poses are hard to predict due to the following reasons. First,
tiny pieces usually lack useful information for alignment given very
limited and often featureless overlapping areas with other parts.
Second, due to the extremely small volume, the point cloud sampled
from such a piece would be unexpectedly dense (highly different
from those sampled from a regular fragment), which makes the full
model hard to converge and even suffer from gradient explosion.
Third, it follows the common practices where large fragments are
prioritized for joint reassembly followed by embedding tiny pieces
separately.
To convert the data from surface meshes to more general point

clouds, we initially performed dense sampling to generate 10,000
points from each fragment. Subsequently, we downsampled the
point cloud to 𝑛 = 1, 024 points. For each group of fragments, we
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Table 1. Quantitative results on the everyday subset and the unseen artifact subset. Bold numbers indicate the best and underlined numbers indicate the
second best. M(R) and M(T) denote rotation and translation errors measured by M, respectively. Ours-XM denotes our model trained with different model size.
↓ /↑: Lower / higher is better.

Test on ‘Everyday’ Test on ‘Artifact’

Method RMSE(R)
degree↓ MAE(R)↓ RMSE(T)

×10−2↓ MAE(T)↓ PA ↑ RMSE(R)
degree↓

RMSE(T)
×10−2↓ PA ↑

LSTM [Wu et al. 2020] 87.420 118.077 16.71 12.781 0.201 88.284 18.928 0.182
DGL [Zhan et al. 2020] 82.708 90.812 15.630 11.642 0.261 85.970 17.812 0.209
Global [Li et al. 2020] 77.632 91.150 14.263 11.334 0.272 80.644 16.554 0.221
NSM [Chen et al. 2022] 86.758 95.30 15.890 12.464 0.160 88.812 17.031 0.148
Jigsaw [Lu et al. 2023] 38.174 32.329 10.688 8.269 0.640 42.315 12.981 0.547
SE(3)-Equiv [Wu et al. 2023] 75.920 82.230 15.088 10.734 0.268 78.151 17.882 0.232
DiffAssemble [Scarpellini et al. 2024] 73.201 80.529 14.722 10.064 0.301 77.181 18.103 0.253
Ours-2M 25.066 22.824 8.692 7.294 0.752 30.219 10.933 0.704
Ours-40M 13.682 11.510 7.411 5.837 0.902 18.182 8.124 0.823

normalized their scales by dividing them by the length of the longest
bounding box diagonal. During the training phase, we randomly
sampled rotation matrices and translation vectors to generate di-
verse poses for each fragment. The dataset was split at the object
instance level into training, validation, and test sets with a 60/20/20
scheme. All the baselines and our methods are trained and tested in
the same setting.

5.2 Baseline Methods
Traditional unsupervised methods are challenging to compare with
due to the complexity of the problem and the lack of public imple-
mentations. On the other hand, given the emerging nature of the
learning-based fractured object assembly task, a limited number
of baseline approaches are available for comparison. Based on an
extensive review, we have carefully selected the following base-
line methods for comparative evaluation: DGL [Zhan et al. 2020],
LSTM [Wu et al. 2020], Global [Li et al. 2020], NSM [Chen et al.
2022], Jigsaw [Lu et al. 2023], SE(3)-Equiv [Wu et al. 2023], and Dif-
fAssemble [Scarpellini et al. 2024]. The selected baseline methods
well represent the state-of-the-art research in fractured object assem-
bly, enabling us to effectively evaluate the proposed framework’s
performance. Regarding the implementation of baseline methods:
DGL [Zhan et al. 2020], LSTM [Wu et al. 2020] and Global [Li
et al. 2020] are following the benchmark [Sellán et al. 2022]. Jig-
saw [Lu et al. 2023], SE(3)-Equiv [Wu et al. 2023], and DiffAssem-
ble [Scarpellini et al. 2024] are based on their official open-source
codes. Note that the official implementation of NSM [Chen et al.
2022] only applies to pairwise assembly. We adopt the implementa-
tion from [Wu et al. 2023] which supports multiple-part NSM.

5.3 Evaluation Metric
In line with previous research efforts in the field, we adopt a stan-
dardized evaluation metric for the 3D shape assembly task, as em-
ployed in prior works such as [Chen et al. 2022; Li et al. 2020; Lu
et al. 2023; Sellán et al. 2022]. Our evaluation metric encompasses
rotation difference, translation difference, and part accuracy. Rota-
tion and translation differences are measured using mean absolute

error (MAE) and root mean square error (RMSE) metrics. Note that
the rotation difference is calculated under degree format. As pro-
posed in [Zhan et al. 2020], part accuracy (PA) evaluates the ratio of
perfectly assembled pieces in the obtained result compared to the
ground truth. It is calculated based on the average Chamfer distance
between the source and target point clouds, with a threshold of 0.01.

5.4 Implementation Details
Our model was implemented using Pytorch and trained using a
batch size of 64 with 150K iterations in about 54 hours on a Linux
server, which is equipped with an Intel Xeon Sliver CPU, eight
4090 RTX GPU and 24GB memory. In our standard 40M network
configuration, thewidth𝑊 of the point cloud encoder E𝑝 is set to 128.
The Multi-head Transformer within the diffusion network consists
of 8 multi-heads, each with a width of 512 and spanning 12 layers.
We used the Adam optimizer [Kingma and Ba 2015] with a learning
rate of 5 × 10−5. We applied the warmup and cosine annealing
strategy to adjust the learning rate. In terms of inference time, our
model typically takes 15 seconds for sampling (depending on sample
times) during the reverse diffusion process. Due to the limitation of
computational resources, we keep the same 150K iterations but use
different numbers and types of GPUs for other baseline methods.

5.5 Comparison
Overall Performance. Table 1 presents a comprehensive quan-

titative comparison of our proposed method with other baseline
approaches on the everyday subset. Please refer to Figs. 7 and 8 for
detailed visual comparisons. As we can see, our method demon-
strated superior performance compared to other techniques across
all evaluation metrics. Ours obtained an average rotation error of
11.51°, which signifies a substantial improvement over the current
state-of-the-art Jigsaw [Lu et al. 2023], which had an error of 32.33°.
This translates to a remarkable decrease of approximately 64%. More-
over, our translation error is superior with an average of 5.84×10−2,
outperforming the best baseline approachwhich reported an error of
8.27×10−2. Regarding part accuracy, our methods have achieved an
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GT

Ours

Fig. 4. Qualitative results on the Artifact subset. Our method is generalizable to unseen categories.

impressive 90.2% success rate in recovering the shape to its canoni-
cal pose. Additionally, our model exhibits generalization capabilities
to unseen categories in the Artifact subset (see Fig. 4 for visual
results and Table 1 for quantitative comparisons).

Our outstanding results are mainly attributed to two reasons: the
strong ability of the transformer model to learn the global relation-
ship between poses and point cloud features, and the formulation
of the fractured object assembly task as a diffusion-based genera-
tion problem. The transformer model outperforms others in many
learning-based tasks, as well as shape assembly which has been
shown in [Chen et al. 2022]. Compared with regression-based meth-
ods, formulating the task as a pose generation problem conditioned
on fragments can not only establish the mapping from fragments to
poses, but also allow an effective learning of the pose prior.

On the other hand, although SE(3)-Equiv [Wu et al. 2023] demon-
strated strong performance in the two-part assembly task in the
original paper, we observed that the transformer-based SE(3)-Equiv
model struggles with the multi-part assembly task in our exper-
iments, exhibiting similar difficulties to NSM [Chen et al. 2022],
despite the two sharing a comparable network architecture. Con-
versely, while DiffAssemble [Scarpellini et al. 2024] faces challenges
in accurately handling rotations, it compensates for this with a trade-
off in translation accuracy, thereby maintaining its competitiveness
against Jigsaw [Lu et al. 2023]. Although Jigsaw [Lu et al. 2023]
utilizes a neural network, it also incorporates a global fracture align-
ment phase as a post-processing step, which contributes to more
accurate results compared to other purely learning-based baselines.

5.6 Ablation Study
We performed ablation studies to thoroughly examine the impact
of various parameters and different training and testing strategies
on the overall performance of our pipeline.

Model Parameter Size. We trained another transformer model
with a different amount of parameters (2M), denoted “Ours-2M” in
Table 1. In the same training environment, we observed that the
larger parameter size (“Ours-40M”) performs better, which aligns
with our intuition. Despite a slight decrease in performance, the
smaller model remains competitive with the state-of-the-art. The
smaller model exhibits approximately twice the error in rotation

Table 2. The influence of the number of fragments in our 40Mmodel setting.

#PN RMSE(R)
degree↓ MAE(R)↓ RMSE(T)

×10−2↓ MAE(T)↓ PA ↑

2 6.588 5.022 0.689 0.844 0.979
3 9.103 7.150 2.971 2.323 0.952
4+ 25.121 20.277 10.238 7.881 0.601

Fig. 5. Model(40M) performance with different fragment numbers.

and translation compared to the larger model. However, the part
accuracy decreases by approximately 15%, indicating that the model
can still assemble shapes in almost all situations.

Fragment Number. In our dataset, the average fragment number
per object is 4.5818, with the maximum reaching 32. We tested our
method to assemble objects with different fragment numbers. The
results are shown in Table 2. As expected, the larger the number is,
the more difficult the assembly behaves. This is also demonstrated
in Fig. 5 where we show the rotation error RMSE(R) and translation
error RMSE(T) while changing the fragment number. It can be seen
that larger fragment numbers pose challenges for learning-based
approaches as individual parts become ‘featureless’. Although the
pose errors increase (bottom row of Table 2), our performance is
still much better even compared with the overall performance of
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Table 3. The influence of adjacency matrix, w/o means ‘without’.

#Model RMSE(R)
degree↓ MAE(R)↓ RMSE(T)

×10−2↓ MAE(T)↓ PA ↑

with Adj(2M) 25.066 22.824 8.692 7.294 0.752
w/o Adj(2M) 28.330 26.291 12.699 10.504 0.714

with Adj(40M) 13.682 11.510 7.411 5.837 0.902
w/o Adj(40M) 18.452 16.566 10.938 9.411 0.875

Table 4. The influence withmissing part (MP) as input, w/omeans ‘without’.

#Condition RMSE(R)
degree↓ MAE(R)↓ RMSE(T)

×10−2↓ MAE(T)↓ PA ↑

with MP(40M) 18.920 17.112 10.599 8.378 0.764
w/o MP(40M) 13.682 11.510 7.411 5.837 0.902

Table 5. The influence of including the tiny parts (TP), w/o means ‘without’.

#Condition RMSE(R)
degree↓ MAE(R)↓ RMSE(T)

×10−2↓ MAE(T)↓ PA ↑

with TP(40M) 30.891 27.702 13.544 10.934 0.727
w/o TP(40M) 13.682 11.510 7.411 5.837 0.902

prior methods (upper part of Table 1), demonstrating the learning
ability of our diffusion and transformer based model.

Adjacency Matrix Module. We also conducted ablation studies to
demonstrate that the adjacency matrix prediction module is bene-
ficial for optimizing the pose estimation between fragments from
our diffusion model as shown in Table 3.

With Missing Parts. We also evaluate the robustness of our model
by introducing missing fragments. Specifically, we removed 20–30%
random parts from the input within the ‘everyday’ subset. The
performance was not affected much (see Table 4). This indicates that
our model learns not only the spatial relationships between adjacent
fragments but also the canonical poses of isolated fragments.

With Tiny Parts. In our dataset preparation phase, we removed
the tiny parts to enhance data quality for stable training and faster
convergence. We also trained and tested our model on the ‘everyday’
subset, which includes these small pieces, to validate our assump-
tion. As discussed in Section 5.1, the presence of these tiny pieces
significantly affected the training phase. Uniform sampling with
1024 points in these low-volume pieces results in an extremely high
point density compared to other, more regular pieces. This charac-
teristic made the training process challenging, as it led to gradient
explosions that required manual adjustments. Even after the com-
plete training, the model’s performance substantially deteriorated
under this condition (see Table 5).

Fig. 6. Failure cases. Our method may fail for complex fragment shapes
(right) and complex fragment patterns (middle and left).

6 Conclusion and Limitation
In this work, we propose FragmentDiff, a novel approach to tackle
the fractured assembly problem by incorporating a diffusion model.
Our comprehensive pipeline leverages a transformer architecture
acting on point clouds to effectively correlate features and accu-
rately predict diffusion noises, resulting in plausible fragment poses.
The quantitative and qualitative evaluations have demonstrated
the superior performance of our approach compared to existing
methods, highlighting its potential for practical applications.

In our experiments, we also tested on the DDIM (Denoising Dif-
fusion Implicit Models) sampler [Song et al. 2021b], but the perfor-
mance decreased rapidly. Therefore, we choose DDPM as a more
stable sampler. It indicates that the pose distribution is sensitive to
the sampling strategy which is different from the distribution of 2D
images. In the future, we would like to find a more stable parameter
space for poses. We also observed some failure cases with complex
fragment shapes or patterns, as shown in Fig. 6. These cases may
be solved by reducing the complexity of fragmented parts using
the divide and conquer algorithm, which divides tough cases into
smaller subsets, each consisting of a reduced number of fragments.
Or we may involve some more prior knowledge (e.g., overlaps) as
guidance for the model to learn the relationships between fragments
to help pose estimation. Other practical considerations such as frag-
ment collisions could also be taken into account as training losses to
enhance performance. Also, there are remaining challenges for real
applications such as the lack of realistic data with erosion/abrasion
effects, the assembly of multiple objects with missing and spurious
parts, etc., which are worth exploring in the future.
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