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Abstract  Extracting feature regions on mesh models is crucial for shape analysis and understanding. It can be widely
used for various 3D content-based applications in graphics and geometry field. In this paper, we present a new algorithm of
extracting multi-scale salient features on meshes. This is based on robust estimation of curvature on multiple scales. The
coincidence between salient feature and the scale of interest can be established straightforwardly, where detailed feature
appears on small scale and feature with more global shape information shows up on large scale. We demonstrate this kind of
multi-scale description of features accords with human perception and can be further used for several applications as feature
classification and viewpoint selection. Experiments exhibit that our method as a multi-scale analysis tool is very helpful for

studying 3D shapes.
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1 Introduction

Due to the fast development of 3D scanning and
modeling technology, triangular meshes are now widely
used in computer graphics. Objects with fruitful sur-
face details can be well captured and constructed into
mesh form. The interest in analyzing the geomet-
ric information of meshes is ever increasing. This is
the most important step for a variety of applications
in computer graphics, computer vision and geometric
modeling, such as shape retrieval, shape alignment,
feature preserved simplification.

In shape analysis, the key is how to define in-
trinsic features which can well represent the model’s
characteristic. To ensure the intrinsic property, the
features are often required to be invariant under rigid
transformation and uniform scaling. Moreover, the ex-
tracted feature should be discriminative to other mod-
els especially with different types. Based on different
feature definitions, shape analysis methods can be gene-
rally classified into two categories: global and locall'.
The former one focuses on describing the entire shape
of the model with a so-called “shape descriptor”. The
methodology of 3D statistics like shape distribution
and histogram is usually involved, while local geometric

details are not concerned much. On the other hand, lo-
cal methods define features based on local surface prop-
erties. Curvature and its related quantities are often
used here.

There have been several publications about deter-
mining saliency or extracting salient features on meshes
in the recent years. [2] defines a measure of mesh sa-
liency using a center-surround operator on Gaussian-
weighted mean curvatures. This work incorporates insi-
ghts from human perception, while the extraction of in-
teresting feature parts is not their concern. [3] defines
salient feature as region with high importance and non-
trivial local shapes. It proposed to extract salient fea-
tures based on curvature from local fitting, but there
is no scale specialty of features considered here. Shi-
lane et al.l¥ presented a novel method to select regions
that distinguish a shape by not only judging the shape
itself. It is based on performing a shape-based search
using each region as a query into a database. This
method can reasonably select the regions which suc-
cessfully discriminate the model with others, but the
precondition is the availability of a shape retrieval en-
vironment. Recently, Chen et al.[% investigated the so-
called “schelling points” on 3D surface. These points
have to be manually selected by the users beforehand
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on a training dataset. Then features can be predicted
on new shapes based on the prior knowledge.

In this paper, we present a method of extracting
salient geometric features on multiple scales. It is more
likely to analyze local shape properties, while global
shape information is taken into account when the scale
of interest becomes large (see Fig.1). Although the defi-
nition of salient feature is also based on curvature and
its variance, the curvature estimation is performed in a
multi-scale way. The salient features extracted on dif-
ferent scales represent different levels of surface details.
We show that the scale specialty of salient features can
help us to understand the surface shape more compre-
hensively.

The main contributions of our paper can be summa-
rized as the following:

e We use multi-scale curvature estimation as an
analysis tool in salient feature extraction. An ex-
tended curvature-driven local surface descriptor build-
ing method is introduced.

e T'wo novel applications based on multi-scale salient
features are presented for comprehensively studying dif-
ferent levels of surface details.

This paper is an extended version of [6]. More dis-
cussions and experimental results are presented. The
rest of the paper is organized as follows. In Section 2,
recent work related to multi-scale salient feature ex-
traction is discussed. In Section 3, we will describe the
procedure of multi-scale salient feature extraction in
detail. Two interesting applications which benefit from
our method will be presented in Section 4. Finally, we
conclude our paper and discuss some of the future work
in Section 5.

2 Related Work

2.1 Curvature Estimation on Meshes

Differential invariants such as curvatures and its
higher order derivatives play a very important role in
local shape investigations. As the extensive availability

()

Fig.1. Multi-scale salient feature extraction. (a) Grog model. (b) Gaussian curvature on small and large scales. (c) Local surface

of triangular meshes in computer graphics, there have
been significant progresses on estimating curvatures on
discrete mesh representation[7]. Curvature estimation
methods generally fall into two classes: discrete dif-
ferential geometry based and using proxies from local
fitting. In [8] and [9], a novel method of estimating cur-
vatures from an integral invariant viewpoint was pre-
sented. The basic idea is to use principal component
analysis (PCA) of the local surface point’s spherical
neighborhood to enhance the robustness and consis-
tency. The advantage of this method is a naturally de-
fined multi-scale property, i.e., the scale of curvature is
just the radius of the estimating local neighborhood. It
provides a possible way for multi-scale shape analysis.

2.2 Mesh Saliency and Salient Feature

Saliency has been studied on 2D images for years and
has many applications such as image retargeting'%.
Different saliency models have been presented such as
[11], where saliency means distinction from surroun-
dings. As its higher dimensional counterpart, mesh
saliency can be treated as region distinctiveness or im-
portance in 3D. [2] develops a model of mesh saliency
using center-surround filters with Gaussian-weighted
curvatures. Their approach is explicitly based on the
model of [11]. A similar saliency definition is presented
in [12] based on local height variations and applied
to surface feature line extraction. [3] proposes to use
salient geometric features to do partial matching on
triangular meshes. The salient features are extracted
based on curvature and its variance. The curvature in-
formation is estimated from local quadric fitting, and no
scale property of feature is considered here. To achieve
the model’s distinctiveness, [4] presents a method that
not only considers the model alone, but also compares
the model with other models in a database. This idea is
unique but the availability of shape retrieval database
suppresses its wider usage. A labeling and training
based based feature prediction method is proposed in
[5]. It is more related to the human perception but the

(d)

descriptors on small and large scales. (d) Salient features extracted accordingly.
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scale at which the features are observed is not taken
into account.

2.3 Multi-Scale Feature Analysis

Feature extraction has received a lot of attention
in shape analysis direction due to the crucial infor-
mation it contains. Moreover, feature has its scale
specialty which corresponds to human perception and
observation. The scale-space representations of 2D
images!'3 are defined as convolutions with Gaussian
kernels of varying width ¢. This multi-scale image
analysis tool has been extensively studied in computer
vision community. Among these researches, [14] pro-
vides a method of automatic scale selection for reason-
able feature analysis. The local appropriate scale is
at which some normalized derivative operator assumes
a local maximum. In computer graphics field, tradi-
tional multi-resolution geometry processing algorithms
are based on hierarchical surface representations like
progressive meshes!!'® or subdivision surfaces!'l. [17]
extracts a collection of piecewise linear curves describ-
ing the salient features of surfaces based on progres-
sive mesh representations. [18] and [19] propose to use
moment analysis of local surface patch neighborhood
to do multi-scale shape editing. The process is based
on a multi-scale feature guided surface decomposition
and user interaction. [20] involves shape-space the-
ory into multi-scale feature extraction on point-sampled
surfaces. [21] uses multi-scale integral invariants and
persistent feature in scale-space representations to ro-
bustly find feature point correspondences for global reg-
istration. Inspired by multi-scale analysis from com-
puter vision community, [22] presents a geometric scale-
space of 3D surface shapes using Ricci flow. The feature
strength is measured by the magnitude of the Laplacian
of the discrete Gaussian curvature. [23] defines heat dif-
fusion process on a shape and the multi-scale property
is reflected from the temporal domain of the heat ker-
nel.

3 Multi-Scale Salient Feature Extraction

In this section, we present our multi-scale salient fea-
ture extraction algorithm in detail. For the geometric
meaning of salient feature, we adapt to use the defini-
tion in [3], where salient feature is defined as compound
high-level feature of non-trivial local shapes. Compared
with the features represented per mesh vertex (cf. [2]),
it conveys much more shape information of the local
geometry. In their definition, the criterion of the salient
local shape is related to its saliency and interesting-
ness which is determined by curvature and its variance.
However, to improve the robustness, the curvature in-
formation they used is an average from local fitting
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using different neighborhood sizes and no scale specialty
is taken into account. In our paper, we propose to ex-
tract the salient geometric feature based on a robust
multi-scale curvature estimation strategy. In this way,
we can further judge the feature property whether it be-
longs to the surface detail or it represents surface more
globally.

3.1 Multi-Scale Curvature Estimation

Instead of computing curvature based on local
quadric fitting, we use multi-scale curvature estimation
in [8]. The principal curvatures and the principal frame
are estimated by principal component analysis (PCA)
of local neighborhoods defined via spherical kernels cen-
tered on the given surface. As shown in Fig.2, suppose
p is a point on surface S. The intersection of the ker-
nel ball B, or its boundary sphere S, with the interior
(i.e., a locally defined side) of S leads to the ball neigh-
borhood Ny and the sphere neighborhood N]. The
neighborhood radius r can be naturally treated as the
scale of interest. Here we only depict the sphere neigh-
borhood case for more clear illustration purpose.

A
Local Neighborhood

Ny (p)

@ () ©

Fig.2. (a) Surface point and its spherical kernel. (b) Intersec-
tion part (sphere neighborhood here) which we perform PCA on.
(c¢) Result of PCA: three moment vectors with different principal

components.

We use PCA of the ball neighborhood for multi-scale
principal curvature estimation all through this paper.
For the implementation detail and complete theoretic
analysis, we refer the readers to [9].

Fig.3 shows the maximal principal curvature of the
Asian Dragon model estimated on two different scales.
Note that the scale features are more apparently reco-

gnized on the small scale compared with the dragon’s
back.

3.2 Local Surface Descriptor Generation

Based on the multi-scale curvature information
which has been successfully estimated, a sparse set of
local surface descriptors (LSD) will be built across the
mesh surface afterwards. Each LSD is a surface point p
and its associated quadric patch that approximates the
surface in a local neighborhood of pl®l. This kind of
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Fig.3. Multi-scale maximal principal curvatures on the Asian
Dragon model, with two different kernels centered at one of its
horns. The red color depicts the highest curvature value, blue

color is for the lowest value. (a) Small scale. (b) Large scale.

LSD has many advantages: adaptive to the geometry of
the shape, independent of the underlying triangulation,
heavily reducing the complexity of the original triangle
mesh representation, and ease of clustering non-trivial
salient features.

In [3], the LSD of a surface point p is built based on
the geometric error between the local surface patch and
the fitting quadric. However, in our method, the curva-
tures are estimated using PCA of local neighborhoods.
In this case, the small shape variance can be neutralized
on a large scale (see Fig.3), which means the geometry
itself cannot reflect the change of the scale. So instead
of using vertex coordinates, we build the LSD based on
the curvature information, which is correlated with the
scale of interest.

We also use the region-growing technique to itera-
tively generate the LSDs. First, we sort all the mesh
vertices according to their curvature function value
Curv(p) in descending order. The curvature func-
tion can be chosen depending on the model’s prop-
erty. Commonly we choose the absolute Gaussian cur-
vature, and for CAD (computer aided design) models,
the maximal absolute principal curvature will be used
(see [3]). Then we build the LSDs one by one from the
sorted list. For a vertex p in the list which has not been
in any LSD, we extract its associated quadratic patch
in a way different from local fitting.

As discussed in Subsection 3.1, based on PCA of
local neighborhood of a surface point p, we get three
eigenvectors which form its local principal frame on
scale r besides principal curvatures k1 and xs. Then
we form the paraboloid P : z = (k122 + k2y?) in prin-
cipal frame as the second order approximation of the
surface at p on the given scale. To generate the LSD
from p, we greedily involve its neighbor vertices and in-
tegrate the error of Gaussian curvature over the local
area until the prescribed threshold is reached. Suppose
q is one of its neighbors, we can get the local coordinates
of g by projecting it into p’s principal frame. Then we
only use the local x, y coordinates ¢, and g, to com-
pute the Gaussian curvature K & of the local osculating

paraboloid as in (1).

Se K1K2
Ke = ey + g W

The error of the Gaussian curvature can then be es-
timated as the difference between K¢, and K}, = k{4,
where ! and ki are the principal curvatures of ¢ esti-
mated in Subsection 3.1. Note that in this way, we do
not involve local z coordinate, and this can eliminate
the error of LSD caused by the local shape variance
when the scale becomes large. A 2D counterpart illus-

tration is shown in Fig.4.

Yp
K P
S
p K Xp

Fig.4. Estimating the curvature error of neighboring point g from

the osculating parabola of starting point p in 2D.

Note that when we accumulate the error of ¢, an
area factor Area(q) is also involved. This is to com-
pensate the error discrepancy if the same model has
non-consistent tessellation. The area factor of a given
vertex can be computed as 1/3 of its one ring neighbor-
hood.

In our implementation, for the model less than 100 K
faces, we use 0.3 of its largest absolute Gaussian curva-
ture times the average area per-vertex as the threshold.
For large models, we increase the ratio to 1.0. This
is due to the fact that the estimated curvature value
will be depressed on a large scale. After a single LSD
with starting point p is extracted, we assign it with the
largest curvature function value, i.e., Curv(p), as the
representative curvature value.

Fig.5 shows the local surface descriptors of Gargoyle

Fig.5. Local surface descriptors of Gargoyle model on two dif-
ferent scales. Red is high curvature function value and blue is
low. Zoomed figures show the tiny structure and starting point
of each LSD. (a) Small scale. (b) Large scale.
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model on two different scales. We can find the LSDs
on small scale follow the surface detail (the ring-liked
shape) better, while descriptors representing global
curved shape are salient on large scale (see also zoom-in
parts).

3.3 Salient Feature Extraction

The definition of saliency or salient feature is the
foundation of distinctiveness analysis of 3D shapes.
Due to its generality and our purpose of extracting
multi-scale salient feature regions, we adapt to use the
definition and measurement of salient feature in [3]. It
defines salient feature as a cluster of LSDs that locally
describes a non-trivial region of the surface.

For each LSD, we grow a cluster of descriptors by
recursively adding its neighboring descriptors until the
saliency grade of the clustered feature is maximized.
This greedy process stops when the contribution of a
candidate descriptor is insignificant. The saliency grade
of a feature cluster is determined by the curvature func-
tion value of each LSD and its variance over the cluster.
We refer readers to [3] for the details.

When the whole surface has been decomposed into
feature clusters, the ones with high saliency grade will
be extracted as salient geometric features. This can be
done by a prescribed threshold of the saliency grade
value or the percentage of salient features among all
clusters. Since concave feature is usually generated by
adjacent meaningful convex parts[24], we suppress its
saliency grade so that the inherent salient feature can
be successfully extracted. The results of salient feature
extraction of Grog model on two different scales can be
found in Fig.1.

4 Results and Discussion
4.1 Multi-Scale Feature Classification

Feature classification is a high level content-based
analysis of 3D shapes. The process is like building a

Joint
Heel
v Ear
¥
¥y ¥
¥
(b)
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group of equivalence classes on feature space. Features
in the same class should have some specialized proper-
ties in common. This is very helpful for understanding
the underlying geometry in a more global view. The
classification results can be further applied to systema-
tical feature editing and other applications!*?:2%,

Our feature classification is based on multi-scale
salient features extracted in Section 3. The goal is to
classify salient features on different scales according to
their global shapes, i.e., the salient features which have
similar shape will be grouped into the same class. We
believe this way of multi-scale salient feature extraction
and classification will give us a comprehensive under-
standing of 3D models.

In our method, we use spin-imagel?® as the shape
signature for each salient feature extracted from a 3D
model. The resemblance between salient features is
measured by their spin-images. A full distance ma-
trix is generated afterwards. Then we extract a 2D
embedding of the salient feature space using multi-
dimensional scaling(?”). From the feature space, we ob-
tain a meaningful classification of salient features.

Fig.6(a) shows the salient feature classification re-
sults of Camel model on small scale. We can see the
meaningful body parts like ears, toes, heels, mouth,
tail and joint of front legs are successfully classified as
in Fig.6(b). The classification results on large scale of
the same Camel model can be found in Fig.6(c). The
salient features capture more global interesting shape
of the surface. Toes and heels are merged to whole foot
features.

Fig.7 shows the feature classification result of Grog
model based on multi-scale salient feature extraction in
Fig.1. We can find the sharp corners on the hammer are
salient features only on small scale. And more global
feature parts are extracted on large scale.

4.2 Multi-Scale Viewpoint Selection

Selecting a good viewpoint for 3D model has always

Fig.6. Feature classification of Camel model based on salient feature extraction on two different scales. (a) Classified salient features

with different colors on small scale. (b) 2D projection of the salient feature space computed using classical multi-dimensional scaling.

(c) Classified salient features on large scale.
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Fig.7. Feature classification of Grog model based on salient fea-
ture extraction on two different scales. (a) Classified salient fea-

tures on small scale. (b) Result on large scale.

been an interesting and important problem. The infor-
mation presented may differ considerably when a 3D
model is viewed from different directions. Choosing a
good viewpoint is also useful to applications such as
generation of icons when browsing a large number of 3D
models. In the process of selecting the optimal view-
point, different properties of a 3D model can be taken
into account. [2] develops a method for automatically
selecting viewpoint so as to visualize the most salient
object features. [28] introduces a method to choose
good viewpoints by minimizing the symmetry observed
from an object.

Based on our multi-scale salient feature extraction,
we can do the viewpoint selection on multiple scales. In
our approach, different viewpoints are determined by
visible surface saliency on different scales. The visual
effect is like observing an object from far to near. On
large scale, features with some global shape information
show up, while more details of an object are revealed
on small scale. The intuition behind our approach is
that people tend to notice global shape features of an
object at first and then pay attention to more detailed
ones. Thus, our approach helps to provide an informa-
tive illustration of a 3D object, with global and detailed
features visible on different scales.

In our method, we define the saliency of a mesh ver-
tex v as S(F)/Size(F), where F is the salient feature
which contains vertex v, S(F') is the saliency grade of
F, Size(F') is the number of vertices that belong to F.
For vertex which does not belong to any salient feature,
the saliency value is 0. After that, we search for the
viewpoint which maximizes the sum of saliency of all
visible vertices. To avoid the sharp variance of saliency
between neighboring viewpoints, here we set top 50%
feature clusters as salient features.

Fig.8 shows the viewpoint-based saliency statistics
result of Gargoyle model from uniform sampled di-
rections. On large scale, the symmetry shape of the
wireframe spherical shape indicates the global symme-
try of the Gargoyle model. And for small scale, better

@ ()

Fig.8. Multi-scale salient viewpoint selection for Gargoyle model.

(a) Large scale. (b) Small scale.

viewpoint is located at the right side (corresponding to
the model itself). This is because the tail of the Gar-
goyle which contains lots of surface details lies at right
side.

The above viewpoint-based saliency computation is
carried out on multiple scales so that different view-
points can be selected. Fig.9 shows two optimal
salient viewpoints of Gargoyle model, which are se-
lected on large and small scale respectively. The up-
right orientation is manually selected here while auto-
matic approach? could also be involved. Note that
two wings of Gargoyle model are more visible on large
scale, while more attention is paid to detailed features
such as rings and tail on small scale.

We also perform our multi-scale viewpoint selection
algorithm on a CAD model as shown in Fig.10. It is
easy to see that the viewpoints selected on two scales

()

Fig.9. Multi-scale viewpoints selected on two different scales for

Gargoyle model. (a) Large scale. (b) Small scale.

@ ()

Fig.10. Multi-scale viewpoints selected on two different scales for
a CAD model. (a) Large scale. (b) Small scale.
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are totally different. This is because features with dif-
ferent levels of details locate on different sides of the
model. For small scale, the bolts are more salient on
one side. On the opposite side, cylindrical hole features
are preferred to be viewed on large scale. This view-
point differences accord with human perception of reco-
gnizing the scale-dependent properties of a 3D model.

4.3 Implementation Details

Our multi-scale salient feature extraction algorithm
is implemented in C++ on the Windows platform.
In all our experiments, we scale the models to fit
into a bounding box of corner points (—1,—1,—1) and
(1,1,1). On small scale, the radii of the ball neighbor-
hood are set to 0.03 and on large scale it is 3 ~ 4 times
larger. For feature classification, we use the cmdscale
function in Matlab to solve the multi-dimensional scal-
ing and the kmeans function to perform a simple K-
Means clustering. For viewpoint selection, we use the
method in [30] to uniformly sample viewpoints on a
sphere which encloses the bounding box of the model.
Given a single viewpoint, the visible part of the model
is extracted based on OpenGL depth buffer.

We test our multi-scale salient feature extraction al-
gorithm on an Intel Core2 Duo 2.66 GHz computer with
2GB RAM. For Camel model with 70 K triangles, the
average cost of salient feature extraction on a single
scale is 38.9 seconds. For Grog model with 200 K tri-
angles, the cost is 40.5 seconds. The curvature estima-
tion step takes most of the time. But when the model
size grows, the cost is not increasing accordingly. This
is because the curvature is computed by PCA of local
ball neighborhood, and the computational complexity
is determined by the voxelized grid which contains the
model. This is very suitable for analysis of large mod-
els. For the details, we refer readers to [9]. On the
other hand, the extraction of local surface descriptors
and salient features are more efficient due to the greedy
approach, and these two processes can be done within
5 seconds for all test models.

4.4 Limitations and Discussion

As shown in the previous experiments, our method
can be used to extract salient features on different
scales and analyse the shape at different levels of de-
tails. Compared with previous work!®!, instead of using
moderate curvature information from averaging local
fitting result with different neighborhood sizes, we per-
form integration-based robust curvature estimation on
different scales. The extracted salient features coin-
cide with the scale of interest and represent different
characteristics of the shape. However, for a model with
fruitful features, it will be very useful if we can identify
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the scale of the feature (i.e., what is the best dimen-
sion to measure the distinctiveness of the feature) and
apply different scales to study different feature parts of
the shape. Recent development on curvature estima-
tion via adaptive integral invariants as in [31] may be
used here.

Also, due to the simple region growing approach to
extract salient feature parts, the boundary of the fea-
ture region is often jagged. A feature sensitive boun-
dary smoothing®® or a graph-cut based algorithm[?!
can be used here as a post-processing step to improve
the smoothness of the boundary.

5 Conclusions and Future Work

In this paper, we presented a new method of multi-
scale salient feature extraction. The salient features
extracted on small scale represent the surface detail
while more globally interesting salient regions can be
extracted on large scale. This kind of multi-scale de-
scription of features accords with human perception
from different scales of interest. We also applied the
multi-scale salient feature extraction to feature classi-
fication and viewpoint selection, and both applications
show that our method as a multi-scale analysis tool is
very helpful for studying 3D shapes.

We want to apply the multi-scale salient feature ex-
traction to a wider usage like shape matching, where
different models can be compared on different scales.
Models with details in common have more similarity on
small scale while models with similar global shape re-
gions are expected to be matched on large scale. We be-
lieve this kind of multi-scale feature based shape match-
ing is favorable of further applications like modeling by
example and shape retrieval.
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