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Abstract—Origami architecture (OA) is a fascinating papercraft that involves only a piece of paper with cuts and folds. Interesting
geometric structures ‘pop up’ when the paper is opened. However, manually designing such a physically valid 2D paper pop-up plan is
challenging since fold lines must jointly satisfy hard spatial constraints. Existing works on automatic OA-style paper pop-up design all
focused on how to generate a pop-up structure that approximates a given target 3D model. This paper presents the first OA-style paper
pop-up design framework that takes 2D images instead of 3D models as input. Our work is inspired by the fact that artists often use 2D
profiles to guide the design process, thus benefited from the high availability of 2D image resources. Due to the lack of 3D geometry
information, we perform novel theoretic analysis to ensure the foldability and stability of the resultant design. Based on a novel graph
representation of the paper pop-up plan, we further propose a practical optimization algorithm via mixed-integer programming that
jointly optimizes the topology and geometry of the 2D plan. We also allow the user to interactively explore the design space by
specifying constraints on fold lines. Finally, we evaluate our framework on various images with interesting 2D shapes. Experiments and
comparisons exhibit both the efficacy and efficiency of our framework.

Index Terms—origami architecture, paper pop-up, image-based design, foldable structure, mixed-integer programming

1 INTRODUCTION

APER is one of the most popular media that plays a
P significant role in our lives with a long history. Besides
common usages such as writing, drawing, and printing,
people also utilize paper for creative design, resulting in
various artistic forms, including origami, kirigami, paper
cutting, etc. These artistic forms fascinate people due to
the easy access to paper. Therefore, they have been widely
used for various applications, such as craft education, in-
door/outdoor decoration, greeting card and bookmaking.

Each form of paper art typically defines specific user
manipulations. For instance, origami only involves folding
a single piece of paper, while kirigami also allows cutting.
Those restrictions on each artistic form make the design pro-
cess time-consuming and skill-demanding, thus motivating
researchers, especially those in the computer graphics field,
to develop computational systems to facilitate the design
process.

In recent years, the computational design of a unique
art form, the origami architecture (OA) structure, has gained
researchers’ attention. Such a papercraft stems from the
traditional origami architecture, which Masahiro Chatani
initially introduced in the 1980s [1]. It is a design of cuts
and folds on a single piece of paper such that interesting
geometric structures automatically ‘pop up” when the paper
is opened (see Figure [2). The restriction of using only cuts
and folds to construct a physically valid and stable 3D struc-
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ture makes the design process extremely challenging. Early
computational design work [2] focused on providing an
easy-to-use virtual design environment to assist the design
process. However, the ultimate placement of cuts and folds
still depends on the user. Li et al. [3] introduced a novel
formulation that defines the foldability and stability of OA-
style paper pop-up structures. In addition, they proposed
the first computational framework to automatically generate
a physically valid paper pop-up design from an input 3D
model. By generalizing the formulation, researchers have
presented a series of works that either improve the approx-
imation accuracy [4] or resolve paper pop-ups with new
styles [5], [6].

Unlike prior works where paper pop-up designs approx-
imate input 3D models, we aim at automatically generating
OA-style 3D pop-up structures from 2D images. The mo-
tivation behind our work is two-fold. First, paper pop-up
designs created by artists are often inspired by 2D sketches
[7] (see Figure . Second, the reliance on 3D models limits
the scope of the methods above and cannot benefit from the
availability and popularity of 2D images. Besides, the lack
of 3D geometric information in the input 2D image makes
image-based OA-style paper pop-up design incompatible
with prior works because it violates the assumption of the
formulation therein.

In this work, we present a novel foldability formulation
in 2D by investigating how to ‘unproject’ the input 2D
shape into a foldable configuration in 3D. Our formula-
tion requires a set of topological and geometric constraints
specified among fold lines in the paper pop-up design.
To facilitate the specification of constraints, we propose
a novel graph representation to abstract the paper pop-
up design, where graph nodes represent patches bounded
by cut/fold lines and graph edges represent fold lines. In
contrast to prior works that achieve foldability by 3D par-



Fig. 1. We present the first computational design framework that can automatically generate physically valid paper pop-up designs from 2D images.
From left to right: the input image; the generated 2D pop-up plan with mountain/valley fold lines in red/blue, and cut lines in black; the corresponding

3D pop-up geometry; the realized paper pop-up with textures in practice.

allel projection, we present a novel graph-based topology
and geometry optimization framework via mixed-integer
programming to automatically generate a foldable paper
pop-up design (see Figure [T). We also introduce an addi-
tional sufficiency condition on stability and a design space
exploration strategy to ensure stability while preserving the
shape semantics of the input 2D image. We further inves-
tigate how to initialize and optimize fold lines for feature
preservation. Finally, we test our image-based paper pop-
up design framework on various input images. The results
and comparisons both demonstrate the effectiveness of our
framework.

In summary, our work makes three major contributions:

o We present the first image-based OA-style paper pop-
up design framework via mixed-integer optimization,
which can automatically generate physically valid re-
sults from 2D images.

o We introduce a novel image-based paper pop-up for-
mulation based on geometric and topological analysis
of a paper pop-up graph representation.

o We derive the foldability conditions using a novel
“unprojection’-based approach and improve stability
conditions together with a simple yet effective design
space exploration strategy.

The rest of the paper is organized as follows. Section
reviews prior works relevant to ours. Section 3] introduces
the basic concepts of the paper pop-up plan and its ab-
stracted graph and the mathematical formulation of geo-
metric and topological properties of a valid pop-up plan.
Section {4] presents our computational paper pop-up design
framework using mixed-integer programming based on the
formulation. Section [5| evaluates the presented framework.

Fig. 2. Practical paper pop-up designs manually created by artist [7].
The inset shows the corresponding 2D pop-up plan, where the cut lines
and fold lines are inspired by 2D sketches/images, and are highlighted
in black and blue/red respectively (zoom in for details).

Section[6|concludes the paper and discusses potential future
directions.

2 RELATED WORK

2.1 Papercraft Design

Papercraft is a delicate art form that creates 3D shapes
using paper as the artistic medium. How to computationally
design paper crafts of different styles has been an active
research topic.

Origami. Origami, the traditional oriental art of fold-
ing, has been well studied in the field. The mathematical
formulations of foldability together with practical folding
algorithms are comprehensively discussed in [8] and [9].
Tachi [10] presented an interactive system that can cre-
ate origami designs for polyhedral surfaces. By analyzing
developable surfaces and their discrete counterpart, var-
ious methods have been proposed for modeling origami
designs composed of multiple developables joined by
straight and curved creases. The employed discrete devel-
opable surface representations include triangle meshes [11],
quad meshes [12], spline surfaces [13]], orthogonal geodesic
nets [14], [15], and pleated structures [16]. In addition to
geometric modeling, the physical simulation and realization
of folding structures have also been investigated [17], [18],
[19].

Kirigami. Kirigami is a variation of origami that also
includes paper cutting rather than solely folding. Mina et
al. [20] employed conformal geometry to model the flat
auxetic material with small incisions such that the material
can be expanded to construct freeform surfaces. Mina et al.
[21] presented a more general class of cut/fold patterns for
generating structures at the limit of the material expansion.
Choi et al. [22] deformed a regular square grid and cut
along its edges to deploy 3D surfaces with a checkerboard
pattern that alternates the original quad faces with quad
holes. Jiang et al. [23] performed geometric modeling with
a corrugated watertight box kirigami representation, which
allows an isometric unfolding into a planar domain after
introducing appropriate cuts.

Paper Cutting/Intersecting/Gluing. Paper cutting, a spe-
cial folk art, has been widely used as decorative patterns. Xu
et al. [24] presented an automatic image-based paper cutting
design framework. Li et al. [25] studied paper cutting in
3D and explored how to animate paper cuts. Several works



have been presented to generate paper statues using mutu-
ally intersecting planar paper sections. Mccrae et al. [26] pre-
sented several principles inferred from user studies to ap-
proximate a given shape using planar sections. Hildebrand
et al. [27] utilized an extended binary space partitioning
tree to generate planar sections with guaranteed castability
for real fabrication. Cignoni et al. [28] proposed a method
that aligns planar sections to a vector field defined on the
given shape. How to approximate a 3D shape by gluing a
set of developable paper segments has also been studied.
Mitani and Suzuki [29] and Liu et al. [30] abstracted a given
shape using triangle strips. Julius et al. [31] decomposed a
mesh model into a set of quasi-developable charts. Shatz et
al. [32] used planes and conics as proxies to approximate
a given shape. Massarwi et al. [33] employed generalized
cylinders to generate developable parts. Wang and Tang
[34] and Stein et al. [35] iteratively deformed a given shape
to be developable while introducing creases. Ion et al. [36]
wrapped a given shape with multiple developable patches
based on a global optimization for effectively finding the
placement of patches.

2.2 Computational Paper Pop-ups

Compared with kirigami, fold line generation is more re-
strictive for OA-style paper pop-up design due to the sim-
plicity of the ‘one-fold-all-pop-up” process. Glassner [37],
[38] introduced a simple rule-based method to generate
pop-up cards using simple geometry. Hendrix et al. [39]
developed a similar system for children. Other early works
mainly focused on interactive design, where the user has to
intervene if needed, and the validity of the pop-up design is
not guaranteed. Mitani and Suzuki [2] proposed a seminar
work specific to origami architectures. Their system allows
the user to design patches with vertical /horizontal orienta-
tion in an interactive manner. The validity of the design can
be judged by condition verification. However, the resultant
design is not guaranteed to be valid, and the user has to
resolve failure cases in a trial-and-error manner. Similar
systems such as [40] have also been presented, but they
all require cumbersome user interactions with specialized
domain knowledge. The first work that guarantees design
validity was proposed in [3]]. The authors invented a set of
desirable conditions to ensure foldability and stability, re-
sulting in plausible pop-up architecture designs. However,
due to voxelization, the resultant design cannot capture the
geometric details of the input architecture model, especially
for curved contours. Le et al. [4] presented a novel surface-
and-contour-aware method based on feature preserving seg-
mentation and patch connection, leading to high-quality
pop-up outcomes. They also proposed additional sufficiency
conditions for stability to better preserve surface features.
Li et al. [5] extended the prior work to v-style pop-ups. In
addition to single-style pop-ups, Ruiz et al. [6] proposed an
approach to convert a 3D model into a multi-style paper
pop-up. How to use different mechanisms of paper pop-
ups to convey motion information from 3D animation has
been studied in [41]. In contrast to previous works that rely
on a 3D model to guide the design process, we initiate the
computational pop-up design using 2D shapes. The large
availability of 2D image data enriches design possibilities.
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We also present novel geometrical and topological condi-
tions on foldability and stability for image-based pop-up
design that are orthogonal to prior works.

In a separate scenario of transforming pop-up books,
Xiao et al. [42] studied how to transform one 2D pattern into
another 2D pattern through a 3D pop-up interface, which
comprises several pieces of paper patches that can be glued
and crossed. This scenario is different from our paper pop-
up design, which only allows folding and cutting on a single
piece of paper.

2.3 Photo Pop-up

In single view reconstruction, ‘photo pop-up’ refers to
estimating 3D properties of non-local image regions for
higher-level single image understanding and is mainly used
to understand global structural cues of outdoor and in-
door scenes. Different scene models have been proposed to
generate photo pop-up results, such as boxed model [43],
staggered model [44], [45], and layered model [46], [47].
Due to the involvement of interleaved orthogonal planes,
the staggered model is the closest to our paper pop-up
structure. However, our work is fundamentally different
from the above as we consider how to pop up a 2D shape
under strong fabrication constraints for paper cutting and
folding, rather than recovering a rough scene model from
a single image using geometry cues, e.g., depth, wall, and
ground.

3 FORMULATION

In this section, we first introduce the preliminary concepts
of OA-style paper pop-up structure, such as background
patches, fold lines, the folding angle, etc., in Section
Then we present the novel graph-based representation that
encodes both geometric and topological properties of the
pop-up plan in Section We discuss the foldability con-
ditions of the paper pop-up plan in Section based on
the graph representation. Finally, we present the stability
conditions of the paper pop-up plan in Section The
following formulation serves as the foundation of the OA-
style paper pop-up generation algorithms in Section {4 In
particular, the foldability conditions are employed to set
constraints during the optimization in Section while
the stability conditions are utilized to guide the design
exploration in Section

3.1 Preliminaries

Our goal is to generate a physically realizable OA-style pop-
up design from a 2D image. To this end, we adopt the same
type of pop-up design presented in [3], [4], where the design
domain D is a single rectangular sheet of paper divided
into a set of non-overlapping patches, P. The boundaries
of patches are marked with either cut lines or straight fold
lines. Two special background patches, denoted as ps and
pE, are bounded by the outlines of D and share a common
main fold line fys (see Figure Bp).

As shown in Figure Bp, 3D structures pop up when
holding pr and rotating pg about fp;. We call the angle
formed by ps and pg the folding angle 6, which is valued
between 180° (fully opened) and ¢ (fully folded), where ¢



(a) (b) (c)

Fig. 3. (a) A 2D pop-up plan with cut lines (black) and fold lines (red
and blue represent mountain and valley folds, respectively), and (b) the
corresponding 3D pop-up structure at folding angle & = 90°. (c) The
constructed pop-up graph.

is a small positive value. We also address a common type
of pop-up structure where all the fold lines must be parallel
to the main fold line during the folding process. To aid the
following presentation, we set up orthogonal coordinates in
2D (u- and v-axis) and 3D (z-, y-, and z-axis) domains, as
shown in Figure Bh and , in which the main fold line s
coincides with the v- and z-axis, and the z- and y- axis are
perpendicular to the z-axis and parallel to the patch pr and
Ds, respectively.

3.2 Pop-up Plan

To facilitate the definition and formulation of pop-up plans,
we propose to encode the important geometric and topolog-
ical properties of a popup plan using a graph representation
(see Figure Bf).

Definition 3.1. A pop-up graph is a directed graph G =
{V,E}, where the nodes V correspond to the set of patches
P ={p1,....,0n} U{ps,pr} and the directed edges E represent
the set of fold lines excluding fur. Two nodes, p; and p;, are
connected by an edge if and only if they share a common fold line.
The direction of the edge is determined by the linear order of its
incident nodes p; and p; in a directed path from pg to pg that
contains p; and p;.

Definition 3.2. The parity (odd/even property) of graph nodes
and edges is defined as follows. First, if the node pg is labeled odd
(even), then the node pg is labeled even (odd). A node is labeled
odd (even) if all its incoming edges are from even (odd) nodes,
otherwise we say the parity of the node is undefined. A directed
edge is labeled odd (even) if its head node is labeled odd (even),
otherwise we say the parity of the edge is undefined.

We now formally define a pop-up plan as follows.

Definition 3.3. A pop-up plan is a set of co-planar patches
where:
o All patches are connected by parallel fold lines and separated
from cut lines, overall forming a rectangular domain.
o The patches are non-intersecting, except at the shared bound-
aries.
e Each patch p; must lie in at least one directed path from pg
to PE-

The above three properties are essentially inherited from
[3], [4] as we all address the same type of paper pop-
up design. For simplicity, we call the last property the
connectivity of a pop-up plan.

3.3 Foldability

A valid pop-up plan should be continuously foldable from
0 = 180° to 0 = e without introducing artifacts such as
bending or intersecting (see Figure 4 in [4]). To ensure the
foldability of resultant pop-up plans, a formal definition as
well as a set of geometric conditions have been proposed in
prior works [3]], [4]. However, the previous systems all deal
with 3D models while our work aims at 2D images. This
fundamental difference in the input makes their approaches
infeasible for our problem on the verification of foldability.
Before introducing the novel necessity and sufficiency con-
ditions of foldability tailor-made for the image-based pop-
up design, we will first review the conditions proposed in
prior works.

According to [4], a foldable pop-up plan will form a
parallel configuration with all patches being parallel to pg
or pg at any folding angle 8. When 6 = 90°, it is called an
orthogonal configuration. Then the condition for a foldable
pop-up plan is as follows:

Proposition 3.1. A 2D pop-up plan is foldable if and only if the
plan is the projection of a parallel configuration along direction
d onto the xz-plane, where d is perpendicular to the z-axis and
bisecting the folding angle 6.

The proof of the sufficiency and necessity of Proposition
can be found in [3] and [4], respectively. In Figure 3] the
2D pop-up plan (a) is actually a 45° parallel projection of its
orthogonal configuration (b).

Since the input to their methods is a 3D model, con-
structing and checking a valid foldable pop-up plan can be
done trivially by projecting the input 3D geometry onto the
2D plane along the vector perpendicular to the main fold
line from a 45° orthographic view. However, our system
starts with a 2D pop-up plan, which contains a foreground
2D shape (from the input 2D image) and two background
patches defined by the main fold line specified by the user.
Due to the lack of a corresponding 3D geometry of the input
2D shape, the projection-based approach is thus infeasible.
In addition, for an intriguing pop-up design, the fold lines
and cut lines should respect the shape semantics (e.g., shape
contour, semantic part boundary) of the input 2D shape
when folded. To this end, the system has to create (i) fold
lines that attach the foreground object to two background
patches; and (ii) fold lines inside the foreground object
to better capture semantic features of the input 2D shape
during the folding process. Therefore, we propose a set of
novel geometric conditions based on the 2D configuration
of fold lines to model the foldability of the pop-up plan.

The key idea behind our foldability formulation is to
“unproject’ the 2D pop-up plan into a parallel configuration
in 3D, and prove the uniqueness of such a mapping. Based
on the graph representation, we now present the geometric
and topological conditions for a foldable pop-up plan.

Proposition 3.2. A 2D pop-up plan is foldable if and only if all
the nodes (patches) in the pop-up graph have unique parity, and
satisfy reqularity: if the node pg is labeled odd (even), then all the
odd (even) and even (old) patches must be respectively parallel to
ps and pg at any folding angle.

The necessity of the above proposition is easy to prove,
since otherwise we can easily find a counter-example that



is not foldable. Now we want to prove its sufficiency based
on the geometry and topology of the unprojected parallel
configuration in 3D. To simplify the discussion, here we
assume (i) the node pg is labeled even, and (ii) the un-
projecting angle is 45°. Note that (ii) implies an orthogonal
configuration in 3D with folding angle § = 90°. The only
difference from other parallel configurations is essentially
the orientation of the y-axis (thus 6) [3].

Unique parity This property can be proved trivially
as it naturally follows the statement in [4]: in a parallel
configuration, if a patch is even (odd) in one directed path,
it is also even (odd) in all other directed paths from pg to
PE.

Regularity Given a point q in the 2D plan, we would
like to prove that there exists a bijective mapping be-
tween q and its unprojected 3D position g in the or-
thogonal configuration. The proof for q € {pg,pr}
is trivial because pg is fixed in the same plane dur-
ing the folding process, while pg is rotated rigidly
along the main fold line fjs during the folding process,
thus we can always compute a

unique corresponding point in n
the orthogonal. copfiguration by wilp,
the 45° unprojection. For other Do T
patches, given a directed path "' Pl
P = {po(ps),p1;--,Pan-1(PE)} T alB
in the graph, suppose q lies in an y‘ . ‘I P
odd node (patch) pa,_1, where _.A® R0 AR ‘
1 < n < N (side view in the 20) Bkt
inset). Then q’s coordinates in 2D
are:

A = (Umaz — Sy o1 — B0 way — Av), (1)

where U;,q, is the coordinate of fold line in 2D along u-
axis, which connects pony_2 and pg. The term wy indicates
the width of node (patch) pj and is defined as the distance
between two consecutive fold lines along the path P. A is
the distance in u-axis between q and the fold line connecting
Dan—1 and pay,. If the regularity constraints are satisfied, q's
3D coordinates in the orthogonal configuration are:

w2za ) (2)

It is easy to prove that q is equal to the 45° projec-
tion of g, as the projection maps any 3D point (z,y, z2)
to (z — y,0, z). Similarly we can prove that this equality
also holds when q lies in even node (patch) ps, with
1 < n < N.Opverall we have proved that all the points in the
2D plan can be generated by 45° parallel projection from an
orthogonal configuration in 3D. Then from the sufficiency
of Proposition we know that the 2D plan is foldable.
According to Proposition we have the following facts.

q = (umam - Zﬁ;ilw% 1= A E

Corollary 3.1. For an odd (even) node p; in a directed path from
ps to pg, the sum of widths for all even (odd) nodes between
pi and pg (pg) is consistent across all other directed paths that
contain p;.

Proof. Here we prove only the case where p; is odd, as the
case of even nodes can be prove similarly. From the proof
of Proposition it is easy to show that the distance d
between odd node p; and pg is simply the y coordinate of
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any point lying in p;, ie, d = Zfi:llwgi, thus equals to the
sum of widths for all even nodes between p; and pg. Since
p; is always parallel to pg, d is constant no matter which
directed path is used for estimation. O

Corollary 3.2. For an edge f; in the graph with u; and (x;,y;)
denoting respectively the location of the corresponding fold line in
the 2D plan and 3D orthogonal configuration, we have:

Ty — Yy = Uy (3)

Proof. Given an edge fa, that connects ps,_1 and pa, in a
directed path from pg to pg, and let’s assume psy,_; is an
odd node, which makes fs,, an even edge (fold line). Then
according to the proof of Proposition the 2D and 3D
coordinates of points lying on the f5, can be computed by
setting A to 0, which leads to:

U2n = Umaz — El :«L+1w2i71 - Eﬁzlw% (4)
in the 2D plan, and
(xQn; an) = (umaz EZ n+1w21 1 EN 1w21) (5)

in the 3D orthogonal configuration. We can see that us, =

Ton — Yan, thus Corollary holds for f,,. Note that the
case of an odd edge can be proved similarly. O
3.4 Stability

In addition to foldability, another key property that renders
a physically realizable pop-up design is the stability of pop-
up plans. A pop-up plan is stable if the folding process
requires no external forces except holding and turning two
background patches, ps and pg, along the main fold line,
and all other patches remain stationary as pg and pg are
held steady at any folding angle. Here we adopt the same
definition of stability as in [3]], [4].

Definition 3.4. A fold line is said to be stable if it has a unique
3D location at any folding angle when fixing pg and rotating pg
along the main fold line, and vice versa. A patch is said to be
stable if it carries at least two non-collinear and stable fold lines.
A pop-up plan is said to be stable if all of its patches are stable.

Sufficient conditions on stability have been studied com-
prehensively in previous works. There are two main strate-
gies to make a foldable popup plan stable, including stabil-
ity propagation from background patches [3]], and reinforced

Fig. 4. To ensure stability, (Left) the previous approach [4] reinforces the
structure by introducing extra cut and fold lines (blue/yellow/pink patch),
which damages shape semantics. (Right) A novel condition for stability
is introduced to respect the shape semantics of individual patches as
well as the interrelation between patches.



Fig. 5. (Top) lllustration of different sufficient conditions for stability.
(Bottom) The corresponding side views.

stability based on a special doubly-connected structure be-
tween two patches with the same parity [4]. In general,
we can directly enforce these conditions in our system to
guarantee the stability of a foldable pop-up plan. However,
we found that such enforcement can easily introduce extra
fold and cut lines, thus damage the overall input shape
in the pop-up structure (see Figure [@}Left). On the other
hand, by observing the pop-up designs crafted by artists, we
discover a novel sufficient condition for stability that better
preserves shape semantics of individual patches, and the
spatial relations between patches (see Figure@lRight). In the
following, we present the sufficient conditions on stability
used in our system. Please refer to previous works for the
details of those adopted conditions.

1) A patch is stable if it is connected to two parallel, non-
coplanar stable patches (Proposition 2 and Figure 4a in
(3D

2) A patch is stable if it is connected to a stable patch and
another patch that is further connected a stable patch
(Proposition 2 in [3], illustrated in Figure Left).

3) A patch is stable if it is on a B-path or F-path. (Proposi-
tion 2 in [4], illustrated in Figure Middle).

4) A patch is stable if it is directly doubly-connected with
a stable patch, and connected with another patch that
is directly doubly-connected with another stable patch
(see Figure 5} Right).

To prove the proposed condition 4, we first define the
notations as shown in the inset. Let 1z = (zg, 0) represent
fold line fg(x = zg,y = 0) in 3D, lg = (0,ys) represent
fold line fs(x = 0,y = yg) in 3D, and w; be the width of
patch p;. The term u represents the unit vector orthogonal
to pg, v represents the unit vector orthogonal to ps. We also
define d; to be the unit vector lies in p; that is aligned to u or
v in a parallel configuration where the patches are parallel
to ps or pg (one such configuration with § = 90° is shown
in the inset). Then for parallel configuration we have:

ls =1 + wiu — wov + w3u — wyVv. 6)

On the other hand, in a general configuration where patches
may not be parallel to ps or pg, and d; may no longer be
aligned to u or v, we have:

ls = 1g + w1d; — wads + w3ds — wydy. (7)

Note that here for simplicity we omit the z coordinate (z =
0) of u, v, and d;.
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By equating the right hand side of the above two equa-
tions, we can derive:

wiu—woV+wsu—wyv = wid; —wods +wzdz —wady (8)

Because p; is doubly-connected
to stable patch pg, ds is always
parallel to to v. Similarly, d3 is al- ;.
ways parallel to u as ps is doubly- P
connected to stable patch pg. Sub-
stituting do = v and d3 = u into
the above equation, we have: ,A

Ps Ay
Pe

p1 PE

wiu — wyv = widy —wady  (9)

As u,v,dq,dy are all unit vec- |- wi -]

tors, the above equality holds if and a V;

only if d4 = v and d; = u, which vl
means p; and p, are always parallel i
to stable patches ps and pg, respec- .
tively, thus p; and p4 are stable. In e

the same way, we can also prove that both ps and pg are
stable, therefore the whole structure is stable.

4 ALGORITHMS
4.1 Overview

Figure [p|illustrates the overview of our algorithm. Given an
input image containing a 2D shape of interest, our system
generates a physically realizable pop-up design through the
following steps. In a preprocessing step, the 2D shape is
divided into meaningful image parts that respect the shape
semantics (Section[£.2). The system then leverages the shape
of image parts and the user specified main fold line (located
in the middle by default) to generate a set of candidate fold
lines with initial patches bounded in-between (Section [4.3).
Utilizing Proposition 3.2} we model the foldability and con-
nectivity of the 2D paper pop-up plan, and optimize the fold
line properties (validity/parity/location) accordingly via a
mixed-integer programming (MIP) (Section [4.4). Stability is
ensured afterwards by exploring the design space spanning
foldable configurations, and verifying stability conditions
listed in Section [3.4] (Section [4.5). The final pop-up plan is
constructed by altering the shape of image parts to match
the locations of optimized fold lines using a constrained
curve deformation method (Section [4.6).

4.2 Pre-processing

Our system takes input as either a raster or vector image
containing a foreground object. We first employ simple color
thresholding or advanced image matting techniques [48] to
extract the 2D shape of the foreground object. Then the 2D
shape is segmented into meaningful image parts in order to
preserve shape semantics in the final popped-up structure.
For vector images, this can be done in a straightforward
manner by directly using the color block information en-
coded in the image file. For raster images, we first obtain an
over-segmentation by performing a conventional Watershed
algorithm, followed (optionally) by grouping segments into
an image part with user assists if needed. Note that for some
input images where the 2D shape is depicted with thin-black
outlines, we simply merge these outlines into the adjacent



(a) (b) (©)
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Fig. 6. Algorithm overview. (a) Input 2D image; (b) The semantic parts generated by segmenting the input image using color information; (c)
According to the shape semantics, a set of candidate fold lines are generated, including boundary and inner fold lines highlighted in green and
orange, respectively; (d) The resultant pop-up plan is generated automatically by optimizing the properties (e.g., validity, parity, location) of the

candidate fold lines; (e) The 3D structures popped up from 2D plan.

image parts to explicitly define the spatial relationships
between image parts. An example of pre-processing can be
found in Figure [6b.

Note that for small image parts entirely lies in another
part, we call them ’island” patches (see the eyes and nose
in the pig example in Figure [7). Based on the observation
of real designs created by artists (see Figure [2), we merge
each island patch into its surrounding neighbour, such that
it represents a decorative pattern or might be hollowed out
in the final pop-up plan.

(a) (b) (©)

Fig. 7. (a) Original segmentation. (b) We merge island patches into
adjacent neighbours before optimization (e.g. eyes of the pig are merged
into the head part). (c) The texture of island patches will be preserved in
the final result.

4.3 Generating Candidate Fold Lines

Given the extracted image parts and a specified main fold
line, a valid pop-up plan can be obtained by placing a
proper set of fold lines at proper locations on the image
plane. We call such a set of fold lines the fold line configu-
ration. Apparently, without imposing any restrictions, there
are numerous fold line configurations. To make the problem
tractable and preserve the shape semantics in the final pop-
up plan, we propose to exploit the shapes of image parts
to generate a set of candidate fold lines that will be used
in the later optimization stage. The process involves two
steps. First, boundary fold lines are generated on boundaries
between adjacent image parts. We further introduce inner
fold lines within each image part to increase the diversity of
the solution space. We elaborate on each step as follows.
Boundary Fold Lines. To initialize boundary fold lines,
we first extract boundary curves between neighboring im-
age parts, including boundaries between image parts and
the background (see Figure [Bp). The extracted curves are
usually with complicated shapes. And it is not desirable to
place fold line at an arbitrary location along one curve. To

ease computation, we initialize a fold line (a line segment
parallel to v-axis) by determining its u coordinate and
looking up its v range along the boundary curve. Note that
multiple fold lines could be initialized along one bound-
ary curve, especially when the curve is long and with a
complicated shape. Figure [8b illustrates how we initialize
fold lines on a boundary curve. Formally, we first calculate
a confidence score for placing a fold line at each potential
location on the curve as explained here.

For a boundary fold line,
the ‘ideal” case would be that
it is exactly part of the curve.

This means that the curve |ww) |w.w) |HS
must contain a straight line v
parallel to the main fold line, "7

which is usually not the case.
Thus we can only estimate a
‘preferable’ location along the
curve. To do this, we define a confidence score to measure
the preference over different locations. For each location,
we use a local window centered at that location for mea-
surement (see the inset). The size of the window has clear
physical meanings. The dimension along v-axis indicates
fold line length and has to be long enough to connect two
patches robustly. Also, we want to leave enough marginal
space for incident patches sharing the fold line, such that the

B Wi(p) N R(s)
| W.(p) N R(s,)

(@) (b)

Fig. 8. (a) The boundary of each image part is decomposed according
to its neighboring patches. For example, the boundary of the yellow part
is divided into two boundary curves shared with the blue and white part,
respectively. (b) Initial boundary fold line placement for one boundary
curve. First, the location with maximum confidence score is chosen to
place a candidate fold line fi. Then the solid part is identified as the
support region for f; and excluded. fs is initialized similarly for the
remaining part. The procedure ends as the entire boundary curve is
covered by the support regions of f; and fa.



fold line is easy to fold by hand. As such, the v dimension of
the window H/ is chosen to be twice the minimal fold line
length, so as the u dimension W/. For a fold line f placed
at location p, suppose the image part on its left is s; and
the part on the right is s,., the preference score is defined as
follows.

(10)

We place a candidate boundary fold line at the location
with maximum score, and exclude its local support region
along the curve from the subsequent consideration. We
repeat the same procedure until the entire boundary curve
is covered by support regions or a sufficient number of fold
lines are initialized.

Inner Fold Lines. In addition to boundary fold lines
which connect image parts at their boundaries, we further
introduce inner fold lines inside image parts in order to
add more degrees of freedom to enable foldability during
the optimization (otherwise the subsequent mixed-integer
programming can easily become infeasible).

More specifically, for each image part,
we decompose it into sub-regions based
on a Reeb-graph like approach. As shown
in the inset, we estimate level sets of
a ‘height’ function that indicate topol-
ogy changes along the height direction of
the image part (black/green lines imply
topology split/merge). The height direc-
tion is always orthogonal to the main fold
line. After decomposition, each sub-region
corresponds to a bounded area between dashed lines (a
branch in the Reeb graph). We place a candidate inner
fold line within each major sub-region with adequate size.
Such initialization avoids inconsistent topology change of
the pop-up graph when optimizing the locations of inner
fold lines within the sub-regions. Note that inner fold lines
divide the original image part into multiple patches in the
initial 2D plan.

4.4 Optimization

Given an initial 2D plan and its corresponding graph G, we
optimize the geometry of the graph elements (i.e., proper-
ties of individual candidate fold lines and the patches in-
between) and the topology of the graph (validity of the can-
didate fold lines), such that the resultant plan represented
by the optimized graph is foldable. First, we define a set of
variables to represent the properties of each candidate fold
line f; and each patch p,, as follows.

o fold line validity: binary variable a; = 1 indicates that
fi is valid (i.e., f; will actually be folded in the final
pop-up plan), otherwise f; is invalid when a; = 0.

e patch parity: binary variable o, = 1 indicates that p,,
is odd (i.e., py, is parallel to the background patch pg
with y = 0), otherwise 0,, = 0 indicates p,, is even
(i.e., parallel to the the other background patch pg with
x = 0).

e fold line parity: binary variable e; = 1 indicates that the
corresponding (directed) edge of f; in the pop-up graph
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heads to a node that is an odd patch, otherwise ¢; = 0
indicates that the corresponding edge heads to a node
that is an even patch.

e fold line location: float variable u; indicates the location
of the fold line f; satisfying u = w; in the 2D pop-up
plan.

Based on the discussion in Section B](Proposition3.2), the
2D pop-up plan is foldable if and only if it satisfies parity
and regularity. These conditions are formulated into par-
ity and regularity constraints as described next. Note that
during the optimization, we also ensure the connectivity
and the balance of the pop-up plan by adding connectivity
constraints and balance constraints.

4.4.1 Constraints

Parity Constraints. According to Definition 3.2} we add par-
ity constraints to all the candidate fold lines (i.e., boundary
and inner fold lines) such that the parity is consistent for
any two consecutive fold lines along any path connecting
ps and pg in the pop-up graph G. Suppose f; and f; are
two consecutive edges (i.e., f; is one of incoming fold lines
and f; is one of outgoing fold lines of a patch), we have the
following constraint P1.

61‘:176]‘, ifaj:1

11
otherwise (1

€; = €y,
In the above, if a candidate fold line is invalid, the constraint
is to make sure its parity is the same as its ascendant, such
that the overall parity can be consistent over the whole
configuration. For all the candidate fold lines incident to
ps or pg, the parity is set to odd by default.

Apart from fold lines, the parity of patches also needs to
be considered. Suppose p,, and p,, are two adjacent patches
connected by a common fold line f;, the following constraint
P2 needs to be satisfied.

if f; is valid

if inner fold line f; is invalid

om =1—o0,,

(12)

Om = On,

Note that no constraint is added if f; is an invalid boundary

fold line as a cut line will be generated therein along

the boundary. Also, the parity of patches ps and pg are
respectively set as even and odd by default.

Regularity Constraints. In addition to parity constraints,
we also enforce regularity constraints to all candidate fold
lines and patches to enable foldability. To simplify the
formulation. We add auxiliary float variables z; and y; to
indicate the location of f;(x = x;,y = y;) in 3D, and
auxiliary float variable d,, to indicate the underlying plane
equation of a patch p,,. If p,, is an odd patch, the plane
is y = d,,, otherwise z = d,,. The regularity constraints
consist of three parts as follows.

The first part R1 enforces the fold line location consis-
tency between 2D pop-up plan and 3D orthogonal config-
uration. Based on Corollary each valid fold line should
satisfy:

T —Yi = U (13)

The second part R2 ensures the correct 3D spatial rela-
tion between patches and fold lines. Suppose a valid fold



line f; connects patch p,, and p,, in sequence, then it should
satisfy the following constraints:

Yi = dm,y T; = dp, if p, is odd

14
T; = dm7 Yi = d’na ( )

if p,, is even

Also, fold lines f; and f; that lie on the same odd/even
patch p,, should share the same y/x coordinate, and the
shared coordinate is determined by the plane equation of
pm. For example, if two fold lines lie in an odd patch with
Yy = dp, then y; = d,, and y; = dpp,.

The third part R3 restricts the relative locations between
all candidate fold lines such that the relative locations of
consecutive fold lines (within each path from pg to pg in
the pop-up graph () are consistent between 2D and 3D.
Suppose f; and f; are two consecutive fold lines in the pop-
up graph (ie., f; is one incoming fold line of a patch py,
while f; is one outgoing fold line), the following constraints
restrict their topology order after optimization in 3D.

Yi > y;, if pp, is even

15
z; < Ty, (15

if p,, is odd

Connectivity Constraints. In Definition the con-
nectivity property of a pop-up plan guarantees that all
patches, including two background patches pgs and pg, are
connected. In our case, we have two types of candidate
fold lines, boundary fold line and inner fold line. The
connectivity is only affected by boundary fold lines. This
is because cut lines can only be introduced if a boundary
fold line is invalid and the two adjacent patches will be
disconnected. To ensure connectivity, for initial image parts
generated from the segmentation, we add the followings
constraints C1 to its boundary fold lines:

> am>1,

mELy;n

Z an 21,

NEEpout

(16)

where E;,, indicates all incoming boundary fold lines, E,;
indicates all outgoing fold lines for an image part. The above
constraints guarantee that at least one incoming/outgoing
boundary fold line is valid for each image part. As invalid
inner fold lines do not affect the connectivity, all patches are
ensured to be connected.

Balance Constraints. In addition to the above constraints
that ensure the physical validity of the resultant pop-up
plan, we also introduce additional balance constraints to
control both the number and location of valid inner fold
lines, making the result more plausible. There are two types
of balance constraints to control the number of valid inner
fold lines in each image part, and the position of valid
inner fold lines, respectively. Note that we do not consider
boundary fold lines here because they will be formulated in
the objectives later.

In practice, we initialize a set of candidate inner fold
lines as a complement to boundary folder lines to allow
a feasible pop-up plan optimization. However, generating
too many valid inner fold lines in an image part can easily
lead to an overly zig-zag folding structure, which is largely
inconsistent with the original image semantics. Thus we use
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B1 to limit the number of valid inner fold lines of each image

part:
Z a < Z Gm + Z Qn,

k€E;nner mELyin nE€Epout

(17)

where we inherit the same notations from the connectivity
constraints for Ey;, and Epoy:, and E;,ner indicates all
candidate inner fold lines for an image part.

Apart from their number, we also realize that the bal-
anced distribution of valid inner fold lines for each im-
age part and for the whole input are also important. For
symmetric image part or input, the balance of inner fold
line locations can help preserve shape symmetry. For the
non-symmetric image part or input, this prevents the opti-
mized patches from having uneven widths in the resultant
structure. We employ B2 that comprises two components to
achieve this, including a local component for balanced fold
line distribution of an image part, and a global component
for the balanced distribution of the whole input as follows:

| D (u =) < A,

1€Eocal

D (ug— )l < oy,

9E€Egiobal

(18)

where ¢, and ¢; denote the center of an image part and the
whole input, w; is the width of the input image and the
weight A = 0.1 by default in our implementation.

4.4.2 Objectives

In our optimization, one of the objectives is to make the
2D shape consistent with its approximation in the pop-up
plan. In particular, we try to avoid large shape variation
caused by relocating fold lines. For simplicity, we use (u; —
u?)? to indicate the shape variation due to the relocation of
boundary fold line f;, where u? denotes the initial location
of f; on an image part boundary in 2D. And we optimize
the shape consistency using the following energy term:

Econsist = Z (uz - U?)27

fi€Fbary

(19)

where Fy4,, contains all the boundary fold lines. Note that
we only consider boundary fold line in Epss¢ since it is
shared by two image parts and would affect their shapes
in 2D (the shapes will be deformed in the post-processing
stage as in Section [4.6), whereas inner fold line has no such
influences.

4.4.3 MIP Formulation

Based on the constraints and objectives defined above, the

overall optimization is formulated as a mixed-integer pro-
gramming:

min Econsist
@is€4q,Ui»TiyYiOm,Am

subject to P1, P2, R1, R2, R3, C1, B1, B2

(20)

By solving the MIP, we achieve the validity, parity, and

balanced location (both in the 2D and 3D domain) of each

fold line and the incident patches between fold lines. Thus
the final pop-up plan can be formed subsequently.
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Fig. 9. We merge image parts in a bottom-up manner to explore the
pop-up design space with different number of image parts.

4.5 Design Exploration for Stability

In previous work [3]], [4], the stability is enforced after a
foldable plan is generated. The basic idea is to revise the
foldable structure according to the sufficiency conditions
on stability. We apply a similar strategy to ensure stability
based on the optimization results. The difference is that in-
stead of revising the foldable structure, we explore the pop-
up design space by changing the image part combinatorics
(see Figure [J). This is based on an observation that, pop-
up plan with fewer image parts can not only simplify the
optimization, but also avoid visual artifacts introduced by
foldable structure modification.

The exploration is performed in a bottom-up manner as
follows. We first optimize all candidate fold lines initialized
from all image parts as in Section [4.4|to generate a foldable
pop-up plan. Then we verify the stability of the plan accord-
ing to the sufficiency conditions in Section 3.3. If the stabil-
ity is not satisfied, we iteratively merge image parts and
perform optimization and stability verification again. The
whole process ends when all the image parts are merged
into one part. It is easy to see that foldability and stability
can be achieved (with the simplest single stair-like popup) if

(a) (b) (©)

Fig. 10. Our framework can generate plausible pop-up designs with
different layouts from the same input image by exploring the design
space, and reach a stable solution (c).
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there is only one image part. This means our algorithm has
the ability to ensure a physically plausible pop-up plan after
exploration. And thanks to the exploration in the design
space, we provide the user with a set of valid pop-up plans
to choose from. Figure [10[ shows a number of user selected
pop-up designs by exploring the design space of the same
input image.

4.6 Post-processing

Although our optimization tries to preserve the initial loca-
tion of each boundary fold line, small variation can still be
introduced to the optimized location, leading to misalign-
ment between the fold line and the boundary which pre-
vents compact 2D pop-up plan generation (see Figure [TTh).
To solve this problem, we further employ curve deformation
to align a boundary to the optimized fold line (see Fig-
ure ) in a way that (i) the two endpoints of the optimized
fold line lie on the boundary; and (ii) the deformed bound-
ary preserves its original shape. More specifically, we first
project the two endpoints of the optimized fold line onto
the original boundary. Suppose the two projection points
are vi and vy, we apply a 2D rigid curve deformation
(an adaption of the state-of-the-art MLS image deformation
[49]) under the constraint that v; and vs coincide with
the two endpoints. Based on the aligned fold line and its
corresponding boundary, we can easily generate a compact
foldable pop-up plan (see Figure[TTk).

(a) (b) (©

Fig. 11. We employ a constrained curve deformation to align the bound-
ary to its optimized boundary fold line to generate a compact pop-
up plan. (a) The optimized boundary fold line may not align with the
associated boundary; (b) A constrained curve deformation is performed
for the alignment with blue and green points represent moving and fixed
control anchors, respectively; (c) Compact 2D pop-up plan with cut and
fold lines in black and red, respectively.

5 EVALUATION

Results. We evaluate our image-based paper pop-up de-
sign framework on various 2D images. Figure shows
a gallery of results, including automatically generated 2D
pop-up plans and the corresponding 3D structures with 90°
fold angles. We also demonstrate the physical validity of
the resultant pop-up plans by generating animated pop-up
sequences (see the supplemental video) and real fabrications
in practice (see Figure [I2). The results have validated the
effectiveness of our framework.

Besides generating automatic results, our framework
provides a set of interactive tools to involve both novices
and professionals in the creative design process (see also
the supplemental video). We allow the user to (i) adjust
the location of a fold line; (ii) specify the validity of a fold



Fig. 12. Our framework generates physically valid paper pop-up designs
that can be fabricated in practice.

line; (iii) specify the parity of a fold line. Figure (13| shows
an example of automatic and interactive results generated
from the same image. Note that too many prescribed parity
constraints may cause conflict, leading to infeasible opti-
mization flagged by our MIP solver. But this rarely happens
in practice since the user only needs to specify very few
parity constraints and gains satisfactory results.

Comparisons. Since no prior work addresses image-
based paper pop-up generation, we only compare our re-
sults with manually generated designs [7] as shown in
Figure To make a fair comparison, depending on the
quality of the input, we either use the 2D sketch image
(the ‘heart’ example) or color the pop-up plan (the ‘bear’
example) provided by the artist as the input of our algo-
rithm. Our framework can generate valid paper pop-ups
(see Figure [14) efficiently (Bear fully automatic within a few
seconds and Heart within 3 mins with user interaction to en-
force symmetry). The results are close to manual results but
without the cumbersome trial-and-error process for placing
fold lines which often takes hours or even days to polish,
depending on the properties of the shape such as symmetry,
size, proportion, etc. Note that despite the automation of our
framework, a few simple interactions on fixing the location

(@) (b) (©) (d)

Fig. 13. Our framework not only enables automated result (a), but also
allows simple user specifications to generate interactive results: (b) The
user specifies the position of the main fold line. (c) The user specifies
that the fold line in the green dash line is invalid. (d) The user specifies
that the fold line in the green dash rectangle is valid and odd.

(a) (b) (©

Fig. 14. Comparison between our results and manual results generated
by artist. (a) Input images; (b) Our results; (c) Manual results in [7].

and validity of candidate fold lines (see Table[I) are applied
here to mimick manual design preferences (e.g., symmetry).
More discussions on design choices are included at the end
of this section.

TABLE 1
A summary of user interactions for producing some of the results in our
work, including the number of fold lines affected and the interaction
type. Interaction types include location, validity and parity.

figure ID 2D shape # fold lines  interaction type
Figure|l MARIO 4 location
Figure HEN 1 location
Figure HEN 1 validity
Figure HEN 1 validity / parity
Figure HEART 5 validity
Figure REINDEER1 1 validity

Ablations. To validate the effectiveness of our image-
based paper pop-up optimization framework, we perform
ablation studies on optimization initialization and con-
straints, as shown in Figure We demonstrate two ex-
amples here, including the Goat and the Reindeer2. The
final resulting pop-up plan (odd fold lines in blue while
even fold lines in red) is shown in Figure . In contrast,
without initializing inner fold lines (see Figure ), it is
not feasible to achieve a foldable solution only based on
boundary fold lines (MIP cannot resolve the validity of the
fold line shared by the green path and the purple path
for Goat, or the green path for Reindeer2). Without parity
constraints (see Figure[I5k), not all patches are foldable due
to the conflicting parity of fold lines (e.g., the yellow image
part in both examples contains consecutive fold lines with
the same parity, thus is not foldable. Without regularity con-
straints (see Figure [I5(d), positions of fold lines can violate
foldability (e.g., fold lines in the yellow image parts result
in unfoldable structures ). Without connectivity constraints
(see Figure ), no patch lies in a connected path from pg
to pg in the pop-up graph. The image parts can even be
all isolated in such a situation. Without balance constraints
(see Figure ), there can be unbalanced locations and
numbers of fold lines distributed either in a local region
or across the main fold line, as highlighted in the Goat and
Reindeer2 examples, respectively.

Implementation Details and Performance. Our frame-
work is implemented using C++ on a desktop machine with
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Fig. 15. Ablation comparisons of Goat and Reindeer2 to verify the pop-up plan optimization. (a) full model (Equation|20); (b) initialization w/o inner
fold lines; (c) model w/o parity constraint; (d) model w/o regularity constraint; (€) model w/o connectivity constraint; (f) model w/o balance constraint.

TABLE 2
A summary of computational performance statistics for all automatic
results shown in Figure[17] We show the computational time (in
seconds) for initialization, optimization, and post-processing together
with the number of image parts, and the number of initialized boundary
fold lines (BFL) and inner fold lines (IFL).

2D shape init.(s) opt.(s) post.(s) #image parts #init. BFL  # init. IFL
BEAR1 0.114 1.622 0.276 18 21 9
BEAR2 0.158 3.769 0.410 28 24 17
BABY1 0.098 0.595 0.188 15 13 8
BABY2 0.136 4.196 0.272 20 18 12
HEN 0.080 1.189 0.169 19 11 13
PIG 0.100 0.308 0.248 16 14 9
GOAT 0.117 1.107 0.330 24 19 15
PENGUIN 0.112 0.760 0.157 14 11 8
COW 0.065 0.333 0.117 12 9 7
FROG 0.104 0.561 0.207 18 15 10
MAN1 0.088 1.272 0.236 24 18 15
MAN2 0.073 0.496 0.181 18 15 11
REINDEER1 0.061 0.722 0.168 15 11 9
REINDEER2 0.100 1.238 0.236 21 15 13
BIRD 0.147 1.879 0.614 19 13 12
DOLPHIN 0.085 1.361 0.199 14 11 9

a hex-core AMD Ryzen 5 CPU (3.8GHz) and 16GB RAM.
The MIP is solved using a branch-and-bound algorithm
[50] implemented in the Gurobi solver [51]. The detailed
timings performance is reported in Table [2| All results are
generated within 10 seconds. The major consumption is the
MIP optimization due to the complex nature of optimizing
integer numbers and real values at the same time. As Gurobi
uses relaxation and branch-and-bound strategies to solve
the mixed-integer problem, the optimization time is only
roughly proportional to the complexity of 2D shape seman-
tics and 2D pop-up plan, which are represented (in a way)
by the number of image parts and fold lines, respectively.

Discussions. Although our framework can generate
physically valid pop-up structures directly from 2D shapes,
the lack of underlying 3D geometry information would lead
to results that do not coincide well with the 3D shape in
regular human impression (see Figure [I6h). Our current
system allows the user to prescribe constraints such as
validity and parity to adjust the convexity/concavity of
the popped-up structure locally (see Figure [I6b). However,
the strong physical constraints may still cause shape vari-
ation/distortion. A similar issue is also reported in 3D-
based methods [3]], [4]. We also noticed that for manual

(@) (b)

Fig. 16. (a)The automatic result may produce flat shapes (e.g., rein-
deer’s face), which do not coincide well with the underlying 3D shape in
regular human impression. (b) The user could simply specify only a few
inner fold line properties to adjust the popped up geometry.

designs created by artists, symmetric fold lines (w.r.t. the
main fold line or center of image parts) are often utilized
as an additional design choice to particularly improve the
aesthetic of results (see Figure [14). This observation moti-
vates us to add balance constraints. However, there exists a
trade-off between plausibility and foldability. In some cases,
a foldable structure can only be generated at the cost of
aesthetics (e.g., adding additional inner fold lines) due to the
nature of the input. Further, our work can be easily extended
to handle multiple shape pop-ups rather than one based on
a simple divide-and-conquer approach that fuses the pop-
up plans from individual shapes in 2D (see Figure [1| for an
example of popping up two shapes).

Lastly, our work focuses more on the geometry and
topology of the paper pop-up plan. Physical properties are
addressed through foldability and stability. In practice, other
physical conditions such as paper thickness and construc-
tion solutions can also affect the design choices, such as
the minimum fold line length (currently set as a parameter
proportional to the image size in our implementation).



Fig. 17. A variety of plausible pop-up designs generated automatically by our framework. We show the original image, segmentation, the 2D pop-up
plan and the illustration of 3D popped up structure respectively.



6 CONCLUSION AND FUTURE WORK

In this paper, we present the first computational design
framework that can automatically generate OA-style paper
pop-up designs from 2D images. This work is inspired by
pop-up designs created by artists and utilizes the availabil-
ity of 2D images over 3D models. Unlike prior works in
which the goal is to approximate a given 3D model using
the pop-up structure, we optimize the pop-up plan to pre-
serve the semantics of the input image while still allowing
physically valid 3D pop-ups. We derive new sufficiency and
necessity conditions on foldability in our problem setting
and formulate the problem as a constrained topology and
geometry optimization. We solve the proposed optimization
using mixed-integer programming. In addition, we propose
an additional sufficiency condition on stability and a design
space exploration strategy while preserving shape seman-
tics. User interactions are also allowed for creative design.
We evaluate our framework on various images, and the
results demonstrate the effectiveness of our framework.

In the future, we would like to improve the ‘perceptual’
quality of the results by taking into account 3D geometry
priors (e.g., depth) inferred from the input 2D image or
specified by the user, such that the popped-up structure
accords more with prior human knowledge on 3D geometry.
Furthermore, the techniques bridging the gap between 2D
and 3D, such as single-view reconstruction and 2D sketch-
based modeling, can be involved to constrain the optimiza-
tion and enhance the results. Also, we would like to further
improve the visual quality of the results by considering
other aesthetic metrics. We plan to conduct comprehen-
sive user studies by asking novices and professionals to
evaluate our results and use our framework. We hope to
propose some quantitative measurements that can be used
in the optimization to improve automated results and/or
to achieve some high-level design guidelines that can be
used to improve interactive results. Further, we hope to
exploit our work in other application domains. For example,
it would benefit the design of customized foldable furni-
ture, which also considers functionalities based on foldable
structures. It would be interesting to use our framework
to design foldable furniture with different shape/texture
contexts, such as a bear chair, a penguin table, etc.
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