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Shape Deformation using a Skeleton to Drive
Simplex Transformations

Han-Bing Yar®, Shi-Min Hi2", Ralph R Marti®, and Yong-Liang Yan§

Abstract—This paper presents a skeleton-based method for verticesas done in previous skeleton-based methods. Secondly,
deforming meshes (the skeleton need not be the medial aXIS)-Weights arenot usedin our method, avoiding the weight

The significant difference from previous skeleton-based methods adjustment issue completely; nevertheless our approach gives
is that the latter use the skeleton to control movement ofrertices ) . '

whereas we use it to control thesimplices defining the model. By high quality results. . .

doing so, errors that occur near joints in other methods can be ~ Our approach can be applied to both 2D and 3D triangle
spread over the whole mesh, via an optimization process, resulting meshes. The inputs to our method are the initial mesh, the
in smooth transitions near joints of the skeleton. By controlling initial skeleton, and the deformed skeleton; the skeleton is
simplices, our method has the additional advantage that no pere considered to be a set of straight line segments connected

vertex weights need be defined on the bones, which is a tedious, .. .
requirement in previous skeleton-based methods. Furthermore, together at joints. The output is the deformed mesh. In 2D,

by incorporating the translation vector in our optimisation, the simplices which are transformed are the triangles covering
unlike other methods, we do not need to fix an arbitrary vertex, the 2D shape. In 3D, we produce a suitable set of tetrahedra
and the deformed mesh moves with the deformed skeleton. Our for use as simplices based on the input 3D surface mesh.

method can also easily be used to control deformation by moving  The main steps of our method are as follows:

a few chosen line segments, rather than a skeleton. .
g « We segment the mesh: we allocate each simplex to

Index Terms—Shape Deformation, Skeleton, Simplex Trans- a nearby bone, which is theontrolling bonefor this
formation, Animation simol
plex.
« We find atransformation matrixrelating the initial and
|. INTRODUCTION final position of each bone.

L . . . o We apply this transformation matrix to the simplices
Mesh deformation is widely used in computer animationand |,,4er that bone’s control.

computer modeling to represent moving objects of changing, \ye yseoptimizationto ensureconnectivityof the final
shape. Many technigues have been developed to help artists simplices, keeping each simplex transformation as close
sculpt stylized body shapes and corresponding deformations possible to the value determined by its bone

for 2D and 3D characters, for example. These techniquggys jjea works not only for control based on adjustment of
include free-form deformation (FFD), multiresolution aPsha skeleton. but can be extended to asy suitable small
proaches, differential methods, and skeleton-based methogg, e ction of internal lines to control mesh deformation. It can

The skeleton-based approach useskeletonin which two s, e extended texpandor shrink bones if desired, and to

or morebonesmeet at articulating joints, to control shape det'vvist part of the mesh, by defining twist axes

formation. This allows intuitive control as it naturally describes g paper is an extended version of work reported at a
the way in which many objects, such.as animals, dgform: RBnference [1]. Compared to our previous paper, the results
muscles and other tissues follow motions of underlying bongs, improved in several important places. Firstly, we incor-
in the skeleton. Such methods are usually controlled by & US§giate 5 translation term in the error energy function used to
chosen skeleton, rather than a precisely determined matherjas mine the deformed mesh: previously, like other simplex
ical medial axis. A serious problem, however, with traditiong},nsformation methods. we needed to fix the location of
skeleton-based methods is that they require a tedious procgss, hitrary vertex to locate the deformed mesh relative to
of We_'ght selection to o_btam satisfactory re_sults, as W'" bﬁ]e skeleton. Addition of the translation term renders this
explained later. Worse, it seems that there is no criterion fghnecessary. This makes it easier for the user to generate a
weight selection which is universally applicabledt cases. long animation sequence, giving an automatic way of ensuring

In this paper, we present a mesh deformation methQghqnth translation results if the skeleton is moved smoothly.
that combines the skeleton-based method and the S|mpl|q%% second improvement is we have greatly improved the

transformation method. Although we still control deformatiogowing efficiency. The deformation speed is improved by

by a skeleton, our approach has two main differences frqyorporating Cholesky decomposition and back-substitution,

traditional skeleton-based methods. Firstly, we use the skele{pRich makes our algorithm more competitive compared to

motion to drive the transformation afimplices rather than qiher skeleton based methods. Segmentation efficiency is in-
a Department of Computer Science and Technology, Tsinghua Universi ':eased' The t_hlrd |mpr0vemen_t Is to Incorporate gra_ph-CUt n

Beijing, 100084, P.R.China the segmen_tatlon me_th_od, an(_JI_maccurate segmentation results
b School of Computer Science, Cardiff University, Cardiff, UK caused by incorrect joint positions at sharp feature can now
* Corresponding Author, IEEE Memeber be easily avoided. Finally, we show how to incorporate twists,
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and also extend our skeleton based method to allow contalljects such as robots can be modeled as if they also did.
using a collection of internal lines, not just a skeleton; we givehe shapes and movement of such objects can be understood
details and discuss limitations of this method. in terms of the motion of a skeleton. So this provides a
more intuitive approach to controlling the deformation of
such shapes. Such ideas are also referred skiasing[22],
envelopeg23] or skeletal subspace deformatif2d].

One of the best known methods for carrying out deforma- Existing skeleton-based algorithms define the final position
tion is free-form deformationThe classic FFD method [2] of a point in the mesh as a weighted linear combination of
encloses a shape in an elastic lattice control volume, sugf initial state of the point projected into several moving

as a Bezier volume, then deforms the volume by moving i§ordinate frames, one frame for each bone. The position of
control vertices: as a result, the shape inside is deformedpointp’ after deformation can be written as:

This technique has been extended to use more general lattice
structures [3].Various curve-based deformation methods [4], , "
[5]can also be classified as similar space-warping deformation P = Z WP My, @)
methods. Such space-warping methods are very efficient, but =1
they do not provide easy control over the details of complexherep is the point’s initial position, M}, is a transformation
models. matrix that transforms boné& from its initial position to
Multiresolution method$6], [7], [8] have also been devel- its new position,w;, is the weight of this point relative to
oped to deform shapes with intricate geometry. A detaildibne k&, and n is the number of bones. Because in Eqn. 1,
shape is first decomposed into a base shape and geometaich point is controlled by multiple bones, careful choice
details. The base shape is deformed using some suitatleweights w; is needed, both to avoid self-intersections,
technigue, and then the geometric details are added back. €specially near the joints, and also to keep the resulting shape
base mesh can be deformed using FFD or other approacisesooth. Appropriateveight selectioris an extremely tedious
This class of approach has the advantage of being efficigmtocess if done manually. Thalmann [25] proposed the use
but care must be taken in how the details are added bacloffvirtual bones to control the point positions, which avoids
convincing results are to be obtained. the use of weights. However, this method only allows a point
Differential deformation methodsave become popular re-to be influenced by at most two segments. Mohr [26] gave
cently [9], [10], [11], [12]. Laplacian coordinates [9] are basetkasons why the traditional skeleton-based method is incapable
on representing surface detail as differences from the locdl expressing complex deformations, and he suggested an
mean. Poisson mesh methods [12] are based on manipulatirigractive method to control weights of points.
gradients of the mesh’s coordinate functions, and then reconin recent years, work has focused on how to learn weights
structing the surface from the Poisson equation. In [13], sdfrom examples [24], [27], [28]. Such learning methods mainly
face Laplacian coordinates are extended to volumetric Laptéiffer in detail of how they represent the point displacements,
cian coordinates, allowing volume-preserving deformation. Sand in the particular interpolation method used. However, it
et al [14] developed a fast multigrid technique tailored foseems thano single method works well irell cases [29].
gradient field mesh deformation. Huang [15] use cotang€efd overcome this problem, the latter paper proposes a multi-
forms to represent Laplacian coordinates, which are invariameight enveloping method: eadomponentf the matrix M,
under rotation, scaling and translation. This method needsisogiven aseparateweight to provide maximum flexibility,
solve a nonlinear system, so a subspace technique is usethstead of a single weight for the whole matrix. Clearly,
accelerate the solving process. this means even more weights must be adjusted. A detailed
Simplex transformatiors another approach to deformatiorintroduction to the skinning method of learning deformation
and morphing. The use of a matrix decomposition of #om examples is given in [30]. James et al. [28] describe a
global transformation was proposed in [16] as a means skinning method without the need for explicitly specifying
carrying out morphing. This method was extendeddcal a skeleton, where a virtual skeleton is generated by the
transformations by [17], in which each triangle or tetrahedranean shift clustering method. There has also been much
is transformed independently, and the results are then madeviwk [28], [30], [31] on accelerating skeleton-based methods
connect consistently using an optimization method. Simpl&sing hardware.
transformation has also been used with surface triangle meshe® short, the basic problem with skeleton-based methods is
to perform deformation learnt from existing examples [18that each point in the mesh is updated independently using
[19]. This method was developed to control shape deformati@gn. 1, which requires thev; to be carefully chosen to
by partition the mesh and control each partition by proxy veavoid gaps and artifacts. However, the points are embedded
tices [20]. Botsch [21] give a mathematical proof which showia a shape, and are related. The mesh provim®mectivity
an equivalence between the simplex transformation methoohstraints previous skeleton-based methods have not directly
and those methods based on differential representations. used this information. We use this information explicitly, to
All of the above classes of methods have a similar disadur advantage. By retaining a skeleton, we keep its merits of
vantage, in that they do not take into account the natural wpyoviding a natural and easily understood control mechanism.
in which many shapes’ features are controlled. For exampRy using the connectivity information, we avoid the weight
vertebrate animals have a skeleton, and many other articulatatjustment issue arising in traditional skeleton-based methods,

II. RELATED WORK
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and instead solve a linear equation to perform a similar tasks [48], [49]. The difference between our paper and theirs is
This approach is easier, and gives high quality results. similar to our paper and [47].

There has been much work on skeletonization [32], [33], In the rest of this paper, we outline basic concepts con-
[34] and segmentation [35], [36], [37], [38] as independemierning simplex transformations and skeletons in Section IlI.
problems, or on creating a skeleton and corresponding s&ge first show our mesh segmentation method based on the
mentation together [39], [40], [41], [42], [43]. In this paper, wekeleton in Section IV, then show how to calculate the bones’
interested in the segmentation method assuming a given skélensformations in Section V. Section VI and Section VIl give
ton. So we only focus on the methods that can create skeletarr skeleton-based mesh deformation methods, illustrating
and segmentation together, or those can create segmentati@m with practical results. Conclusions and discussions are
by skeleton. Katz [39] compute a fuzzy decomposition bgiven in Section VIIl. Both 2D and 3D triangle meshes are
an iterative clustering scheme, the refine the decompositiconsidered.
by Graph-Cut method using geodesic and angular distances.
Further more, their segmentation can be used to compute a
skeleton. Lien [40] suggested how to create a skeleton and
perform segmentation using an iterative approach, but thisAs Simplex Transformations
not ideal as the skeleton changes during iteration. Cornea [41
also proposed segmentation method which following skelet?i

creation. This method segment the mesh by tracing the fie 2D and 3D. Given two such simplice® and S, in some

lines, which was defined during skeleton creation. So it al%%ace there exists a unique transformation that chafiges
does not appropriate to be used in segmentation with givlt?l b SQ’ This can be written as:

skeleton.
In many cases, artists prefer to specify a skeleton, in order v; = Mu; + T, 2)

to be able to achieve the desired animation control, rather

than having an automatically determined skeleton. So it Where M is an affine transformation matrix representing

useful to perform segmentation from a given skeleton directkgtation and shape change informatidn,is the translation

without using the meta information in the skeleton creationector, thew; are the vertices ofS;, and thewv; are the

Li [42] showed how to obtain a segmentation correspondiggrresponding vertices ¢f,;. M andT can be calculated from

to a given skeleton using a space sweeping method, but ttiie vertex coordinates df; andS,, as follows:

does not seem to work well if the skeleton is rather coarse. A

IIl. SIMPLEX TRANSFORMATIONS AND SKELETONS

]A simplex is the simplest possible polytope in a given space:
ngles and tetrahedra are the highest dimension simplices

similar method was proposed in [43], while it takes the shortest M=vU, ®3)
geodesics between feature points as borders instead of CrO8Ssre in 2D
section sweeping line. We thus give a new method to segment ’
the model which takes into account both Euclidean distance vV = [ V] — V3 Vg — U3 } , (4)
and shortest path distance between simplices and skeleton U = [w—us us—us ]
bones. Our results show that this method while simple, is ’
effective. and in 3D,
For further discussions on skeletons and segmentation, the
reader is referred to the excellent survey by Cornea [44]. vV = [ Ul —VU4 V2 — V4 U3 V4 ] ; (5)
Bloomenthal [45] used a segment-based skeleton to deform U = [ Ul —Ug Up —Ug U3 — Uy } )

the shape’s mathematical medial axis, which was then used
to drive the shape deformation. Yoshizawa [46] extended tHitaving found/, it can be substituted into Eqn. 2 to firfd
work by combining it with the Laplacian coordinates approach.
Whilst revising this paper, [47] came to our attention. So
of its techniques are similar to those in our earlier paper [1],
but it differs in the following ways. Firstly, we proposed a The strict mathematical skeleton, or medial axis, is the
segmentation method by using given skeleton. Secondly, Weeus of the centers of all maximal spheres contained within
try to keep the transformation matrix of each mesh simplex #w object. Generally it is quite complex even for simple 3D
similar as possible to the corresponding bone’s transformati@hapes, and may contain sheets as well as curvilinear elements.
while they try to keep mesh edge vectors as close as possilbis also sensitive to small perturbations of the shape boundary.
to the transformed original mesh edge vectors. Thirdly, like #ror simplicity, most skeleton-based deformation methods use
our conference paper [1], their error energy function has @am approximate skeleton to control deformation, consisting of
term to keep the mesh moving together with the skeleton. Agaight lines of zero thickness—boresonnected at articu-
pointed out earlier, this means that at least one vertex miaed joints.
be fixed before solving the optimization function, which our In many cases, artists prefer to create the skeleton by
current work overcomes. This will be detailed discussed land, to give the desired degree of control over the shape.
Section VI-C. It seems that more and more people show thdiis not very difficult to create such an approximate skeleton
interest in combining the skeleton-based deformation methddgeractively. Automatic methods of skeleton generation also
and the deformation methods using mesh local attribute, suekist, such as [34], [42].

. Skeletons
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IV. TRIANGLE MESH SEGMENTATION

In this section, we consider how to segment the triangle
mesh using the skeleton, which decides which triangles are
controlled by each bone. The results of our segmentation
method intuitively correspond to near-rigid components, such
as a foot, a lower leg, an upper leg, and so on. We still follow
the basic segmentation approach presented in our previous
paper [1], but some important improvements have been made
to accelerate it and to overcome previous limitations. We
first summarise the segmentation method used in our previous
work, and then explain our improvements. (@) (b)
A. Mesh Segmentation Using the Skeleton

We now briefly review the segmentation method from our
previous work; further details are given in [1]. In this approach,
each triangle is controlled by jusine bone. We thus need
to segmenthe model according to the given skeleton, or in
other words, decide which bone should be used to control
each triangle. Having done this, we can then decide how each
triangle should deform. It should be noted that although we
create a tetrahedron for each triangle for the purposes of 3D
deformation as discussed in Section VI-B, the tetrahedra need
not be created during the segmentation phase. We segment (c)

the mesh according to Euclidean distance and shortest path _
distances on the mesh as follows: Fig. 1. 2D skeleton control domain: (a) cartoon character, (b) skeleton, (c)

. . . skeleton control domain.
1) Decide the control domain of each bone using range

planes placed at the end of each bone. Range planes
decide which triangles a bone can possibly control. At bones for which it is within range. The bone with
bones with free ends, range planes are orthogonal to the the shortest path distance is the control bone.

bones; where bones meet, range planes bisect the ar‘g'ﬂormally, a skeleton is thought of as lying within the
between bones. volume defined by the mesh. However, in our method, we

2) Decide which of those bones actually controls eagRquire anyfree ends of bones of the skeleton (i.e. ends not
triangle, by choosing the bone with minimueffective connected to other bones) to lie justtsidethe mesh, to ensure
distance with penaltyo the triangle [1]. Theeffective that each bone properly controls all the triangles in its control
distance with penaltgan be written as: domain. If a given skeleton has free ends within the mesh, it is

defipen = degt + 10, (6) stra.ightforward to extend them o_utside the me;h autgmatically.

Figures 1-3 show segmentation results using this method.

whered.g is theeffective distanceandn is the number Figyre 1(a) shows a 2D cartoon character, Figure 1(b) shows a

of intersections of theffective lineand the mesh bound- corresponding 2D skeleton and Figure 1(c) shows which bone

ary. Effective distances the distance from the trianglecontrols each triangle, as determined by the method above.
center to the bone along tregfective ling a line which  Triangles of a given color are controlled by the bone of the
takes into account the orientations of the range planggme color. Figure 2(top) shows a 3D skeleton for the Dinopet,

at the ends of the bones. The idea here is to that if vd Figure 2(bottom) shows the control domain of each bone.
have to pass outside the mesh on a shortest line from

the bone to the simplex, such a bone is (probably) not . )
a good choice for the controlling bone for this simplexB- Accelerating Segmentation
A binary tree is constructed to accelerate the calculationin 3D, due to the potentially very large size of the mesh,
of the number of intersections. it would be very time consuming to test all bones against
3) Check if the minimuneffective distance with penalty  all triangles to decide the controlling bone for each triangle.
less than a threshold—if so, it means the simplex can heis easy to show that if a given triangle is controlled by a
seenby one or more bones (i.e. the straight line referregarticular bone, then each of its neighbouring triangles must
to above does not cross the mesh boundary). be controlled by the same bone, or some bone adjacent to that
a) If less than the threshold: the bone with the mirbone. This observation can be used to accelerate segmentation
imum effective distance with penaltgontrols this via a traversal process.
simplex. We start by selecting a trianglatersectedby a bone with
b) If more than the threshold: calculate tehortest a free end as the initial triangle. Clearly, this triangle can be
path distancen the mesh from the simplex to theseen from that bone, and has minimeffective distance with
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Fig. 2.

Fig. 3.

Top: skeleton. Bottom: control domain of Dinopet.

Left: skeleton. Right: control domain of woman.

@) (b) (©

Fig. 4. Segmentation affected by the joint position.

penaltyto that bone, so is controlled by it. We next find the
control bones of those triangles adjacent to this triangle, using
the same criteria as before, but only considering the same bone
and bones connected to it. We then pass to the neighbours
of these triangles, and so on. In principle, it is possible to
construct extreme examples for which this accelerated method
does not work well, but in practice, this method greatly speeds
the segmentation process, giving greater savings the more
bones there are in the skeleton. Of course, a similar method can
also be used to accelerate 2D segmentation, but the generally
smaller mesh sizes lead to reduced benefits.

The time spent in creating the segmentation and BSP tree
creation for various 3D models is listed in Table | in Sec-
tion VI-B. Experiments show that our segmentation algorithm
is very effective and robust.

C. Overcoming Limitations

Our segmentation method is based on the skeleton, and thus
its results depend on the positions of joints. In places where
features are not sharp, positions of joints and corresponding
range planes are not crucial. However, they must be carefully
located where the mesh has sharp features.

For example, Figure 4(a) shows a mesh with a sharp feature
and an inaccurately placed skeleton joint: Figure 4(b) is the
corresponding segmentation result created from the skeleton.
Obviously, the segmentation result is not appropriate, and will
adversely influence the final deformation results.

In our previous work, we provided an interactive approach
allowing the artist to modify both the joint positions and make
small changes to range line and range plane orientations. Such
an approach is labour intensive and requires careful work.

As an alternative, in this paper, we propose the use of a
graph-cut method to optimize the segmentation boundaries to
accommodate sharp features, following [39]. If a feature exists
near the boundary where two segmentation components meet,
we do the following:

1) Find the boundary vertices between these two compo-
nents, and generate an extended region on either side for
boundary optimization.

2) Build the dual graphof the extended region. In this
dual graph, compute the capacity of each edge based on
dihedral angles.

3) Find the optimized boundary by applying a maximum
flow algorithm.
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v

Fig. 6. 2D bone transformation.

(@) (b) (©) (d) :
each bone can be calculated. Figure 6 shows a bong B
Fig. 5. Optimization process for inaccurately placed joint position. in the initial skeleton, and afl; B, in the deformed skeleton.
We initially calculate the bone transformation matrix without
] . . ) o scaling, as bones normally have a fixed length. We later show
Figure 4(c) gives the final segmentation result optimized frofy,y 1o take scaling into account if additionally required. When

the result in Figure 4(b). we have the transformation matrix of each bone, the translation

If several components meet near a sharp feature, we YgRtors can be easily calculated. In the following, we Tise
a hierarchical algorithm to refine the segmentation resquresem quantities related to bones.
from coarse to fine. First, we allocate these components tQyjithout scaling, we translatel, B; so thatA; coincides
two large regions, where each large region contains one g the origin, the translation vector beifigy:. A, B; is then
several connected components. The boundary between the f4ataq anticlockwise through an anglearound the origin

large regions is optimized with respect to the feature. Thgyji it lies in the same direction ad,B,. We then translate
optimization algorithm is then applied iteratively by d'V'd'”gA131 so that A, coincides with A, the translation vector

each large region into two smaller regions, until each regigfing 7,. This transformation process can be expressed as:
has only one component.

Figure 5shows the optimization process for one leg of the o= R+ Tr1) + Tre, (7
Dinopet. Figure 5(a) gives the mesh and the inappropriate
placed skeleton, where its ankle joint and heel joint are ina¢here u is any point on the boned; B, and v is the
curately placed. Figure 5(b) shows the original Segmemaﬂgﬁrresponding point after transformation. The transformation
obtained by the method in Section IV-A. Figure 5(c) showdatrix is given by
the improved segmentation result after the first round optimiza- _ cos  —sing
tion. The boundary at the knee is smoother, while the two toes R= { ] , (8)
are combined to give one region, with a smooth boundary at
the ankle. In Figure 5(d), the boundary between two toesasd the translation vector is
optimized. This boundary optimization process is fast enough _ s _
to interactively display its effects on the segmentation: much Tr = RTR1 + The. (9)

less time is taken than for segmenting the whole model as . . .
given in Table |. Now consider the case with scaling. Suppose the scale factor

We should note that this maximum flow algorithm is based * 30 that after deformation, _the bone has a Iengll_irmes
on dihedral angle calculations, which can give good results'5t O”g'f‘a' length. After translatlrjgllB_l as.before, using the
places whersharp featuregxist, but which works less well in tranglatlon vectoﬂ“sp we rot_a~te it until3, is located on t_he
smooth regions. Thus, we only use this method to interactivefy?>'S: USing a rotation matris; . We then scaled; 3, until
optimize the component boundaries near sharp feature wihgfjas the same length at, B,, using a scaling matri:

sin 6 cosf

we are not satisfied, after performing segmentation as in ~ a 0

Section IV-A. Small variations in joint positions ismooth S = { 0 g ] ’ (10)
regions have very little visual effect on deformation results,

and such optimization is not necessary there. where 3 is the scale factor in the direction perpendicular to

the bone. Usually, the animator will choogdo be1.0, or the
same asy, but may also use other values if desired. Finally we
rotate A; B; into the same orientation a%, By, and translate
In our method, simplex transformations are derived frO'J?llBl until 4, coincides withA,; the rotation matrix involved

the transformations of bones. This section discusses how (8, and the translation vectori&;,. Overall, we can write:
bones’ transformations are computed.

V. TRANSFORMATION OFBONES

w = }§52§II§51(5 + fgl) + TSQ. (12)

A. Transformation for 2D Bones where? is a point on boned; B; after rotation, andy is the
Given an initial skeleton and the corresponding deformewrresponding point after scaling. The overall transformation

skeleton determined by the user, the transformation matrix fioratrix in this step is given by = Rg25, Rgs1.
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Fig. 7. 3D bone transformation.

Substituting Eqn. 7 into Eqn. 11, we can write the overall b
transformation as the combination of a rotation and a scaling, @) (®)
M = SR, (12)

Fig. 8. (a) Deformed 2D skeleton. (b) Deformed cartoon character.

where if there is no scaling$ is a unit matrix. The whole
translation vector is now as close as possible to that of its control bone. An error

~ o~ ~ ~ function is used to represent the difference between the actual
T = 5(Tr + Ts1) + Tso. (13) triangle deformation and the deformation indicated by the

For the later convenience, we write; = S(Tx + Ts1) + Ts,  cONtrol bone, defined by

E =Y A(|M; = M|} + o|T: - T1])3),  (15)
i=1

B. Transformation for 3D Bones

We now consider how to calculate the transformation matrix _ _ _ _
for bones in 3D. In Figure 7, suppost B;, A»B, represent Wheren is the number of triangles in the mest; is the actual
a bone in 3D before and after deformation. We transiat®, ~ transformation matrix for the" triangle, given by Ean. 3}
so thatA; lies at the origin. We then create a unit vecfér is the actual translation vector, which can be calculated by
based at the origin, perpendicular to both B; and A, B, Eqgn. 2. M; is the ideal transformation matrix of this triangle,
and rotated, B, aroundN until A, B, is in the same direction Which is the transformation matrix of the controlling bone of
asA» Bo; let 6 be the rotation angle. Finally we translate 3, this simplex_ anq is given by Eqn. .12» is the ideall translation
until A; coincides withA4,. The transformation matri can Vector and is given by Eqn. 137 is the Frobenius normx

be calculated in a similar way to the 2D case and is found & the square of the reciprocal of the diagonal length of the
be: original mesh bounding box, which is used to eliminate the

2 influence of the mesh sizel; is the area of theé” triangle,
a” + ppev  abA+cpu ackh —bu N .
=~ 9 which is used to take account of the triangle area: large
R=| ab\—cu b*+ pgcv beh+abp |, a4 .. . o
Geh b beh —abp ¢ + poyy triangles should provide a greater contribution to the error
“ energy function. We minimizé” to get the best deformation
where N = (a,b,c), p = sinf, v = cosf, A = (1 — cosf), results while ensuring mesh connectivity: the variables in
pab = @ + b2, ppe = b2 + 2, pac = a® + 2. If scaling the minimization problem are the vertex coordinates of the
is also required, we can determine the scale matrias in deformed mesh.
Section V-A. The overall transformation matrix has the same This classical quadratic optimization problem can be trans-
form as in Egn. 12, while the translation vector for each boriermed into a linear equation by setting the gradientibfo
has the same form as given in Egns. 9 and 13. zero, which can be written in the form:

VI. TRIANGLE MESHDEFORMATION K'X'=d, (16)

We now discuss how to drive the triangle mesh deformatigihere this linear system factors irtandependent subsystems

using the skeleton transformations. corresponding to the: and y coordinates of the deformed
mesh; furthermore, the coefficient matrix for each subsystem
A. 2D Triangle Mesh Deformation is the same. We obtain
If every triangle were to transform rigidly in the same KTKX = KTd,, KTKY = Kwa (17)

way as its controlling bone, gaps or overlaps would occur

between the triangles controlled by adjacent bones, causiigere X andY are thex andy coordinate vectors of the

tears or overlaps in the object. We need to enforce vertdgformed mesh, of dimensiom, the number of vertices in

consistency requirements to ensure the mesh retains its origith@ mesh.K is a sparse matrix of sizex x m, andd, and

connectivity d, are vectors with dimensiom. K7 is the transpose form
We do this using armptimizationmethod, which enforces of matrix K. We use direct Cholesky decomposition and back

connectivity while trying to keep each simplex transformatiosubstitution to solve these sparse linear systems.
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B. 3D Triangle Mesh Deformation

The above method can also be extended to asdahedron
mesh, but in practice surfadeiangle mesh models are far
more widely used in computer graphics. Furthermore, trian-
gle mesh models have far fewer elements than tetrahedron
models—the latter would require much higher processing
times. Thus, for simplicity, here we consider the 3D triangle
mesh case, rather than the tetrahedron case.

With regards to deformation, the 3D triangle mesh case
is very different from the 2D triangle mesh case, because a
triangle is not a maximal dimension simplex in 3D, nor is
there a unique transformation matrix for changing one triangle

(@ (b) into another. Sumner [18] gave an ingenious way of extending
a simplex transformation method to a 3D triangle mesh by
constructing a tetrahedron for each triangle. Here, we basically
use the same method for constructing a tetrahedron, except that
we put the new vertex above the centroid of the triangle rather

Figure 8 shows a deformed skeleton and the resultiﬁt@;an over one of it_s yertices. Doing so _makes t_he fF’”QWing
deformed mesh for the cartoon character in Figure 1. TREUations symmetric in, y, and z coordinates, simplifying

corresponding mesh has1 vertices, and 0.02s were requiredn€ coding of Eqn. 18. _ L
to calculate the result on a 3.2Ghz Pentium 4 machine. We add a fourth vertex to each triangle of both the initial
and deformed mesh to give a tetrahedron. For the initial mesh,

The main difference between our method and traditionge fourth vertex is added in the normal direction over the
skeleton-based deformation methods is that we use bonesrigngle’s centroid. Let, v2, v5 be the vertices of a triangle
drive the triangles while they use bones to driveertices on the initial mesh. The fourth vertex is placed at
Although each triangle tries to follow the transformation
determined by its control bone, it cannot follow it absolutely— vy = .
otherwise there would be gaps between adjacent triangles, 3 V(02 —v1) X (v3 —v2)
especially for those located near joints. Note, on the othehe distance between, and the centroid is determined in
hand, that if only a few triangles located near joints change@ich a way as to ensure a well-shaped tetrahedron. The above
their shape to preserve connectivity while others precisedyjuation is only used to calculate, in the initial mesh;
followed the transformations given by their control bonegertices in the deformed mesh, including, are determined
the error energy defined in Eqn. 15 would be very large. By, the optimization process.
spreading such triangle distortion to surrounding triangles, theThe 3D triangle mesh is now deformed using the same
error is greatly reduced: our optimization method results gptimization approach as for the 2D triangle mesh in Sec-
triangle shapes which are as close as possible to the origifigh vI-A. In this case the 3D version of Eqn. 16 separates
triangle shapes. into three independent linear subsystems:

Fig. 9. Distortion spreading: (a) area change, (b) angle change.

(Ul + vo + ’U3) (’Ug - ’Ul) X (Ug - ’Ug)

Ir_1 Figure 9,_ an exa_mple is given tp _show how the _distortiop(TKX - KTd,, KTKY = Kwa KTKZ = KTd,. (18)
varies according to distance from a joint. The distortion extent ‘
can be described by area change and internal angle chang&hs dimension of the vectors in Eqn. 16 is naw-+ &, and
triangles. Figure 9 (a) represents the triangle area change offeis an (m + k) x (m + k) matrix, for a mesh withm
the mesh. The triangle area change is calculatet/'oy|/A, Vertices andk faces. We use direct Cholesky decomposition
where A is the original triangle area, arjch 4| is the triangle and back substitution to efficiently solve these large sparse
area change after deformation. Figure 9 (b) represents tigar equations.
triangle angle change, which is calculated mj’:l Aol Figure 10 and Figure 11 give the Dinopet skeletons and
where |A«;| is an internal angle change in the triangle. Ifiesults using our technique. Figures 12-15 illustrate other 3D
these images, the lighter the triangle color, the less the triangformation results. The first model in each Figure is the
distortion. The distortion is the heaviest near joints, but nefiginal model; others are deformed results produced by our
limited at joints. The distortion spread to the middle of thgethod. All results were calculated on a 3.2Ghz Pentium 4
bone and to the free joints, while become lighter. The triangl&3achine. Table | shows the times taken to deform the 3D

near the middle of the bone and the free joints always hatodels illustrated in this paper for one time, listing separately
the lightest distortion. times for BSP Tree Creation, Segmentation, Cholesky decom-

. _ . position, and Back Substitution for each deformation.
We can also ussetrain [50], a quantitative analysis tool of

deformation, to analyze the distortion extent of our deforma- ) ] )

tion results. Using strain, we get very similar results as fa- Deformation without Translation

Figure 9, that the triangles deformation is spread from jointsIn Section VI-A and VI-B, the error energy function con-
to the middle of bone and free joint, while become lighter. tains both a transformation matrix and a translation vector.
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Fig. 10. Dinopet skeleton.

Fig. 11. Dinopet model.

ARy

Fig. 12. Armadillo model.
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Fig. 13. Horse model.

Fig. 14. Female model.

Fig. 15. Palm model.

As done in our previous work [1], it is possible to create awhich can essentially be solved as before, with one significant
error energy function which ignores the translation vector. Thifference—this basically affects the position of the deformed
simplified energy function is: model, and has an insignificant effect on its shape.

In this case, if the deformed mesh is translated by some
(19) Vector, the translated mesh will have the same error energy as

n
E =7 A M; - M3, |
the untranslated mesh: translation does not change the error

i=1
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Arma Dinopet Horse Female Palm

Vertices 50852 13324 8433 30432 12782

BSP Tree 1.21 0.42 0.31 0.81 0.42

Segmentation 1.48 0.37 0.28 0.74 0.36

Cholesky 5.13 0.92 0.57 2.97 0.89

Back Substitution 0.69 0.10 0.06 0.33 0.10
TABLE |

TIMING INFORMATION

(@) (b)

Fig. 16. Left: Deformation without translation. Right: Defieation with
translation. (c) (d)

Fig. 17.‘ Deformation using our m_ethod and SSD: (a) our method, (b) SSD,
energy in Eqn. 19. Thus, the problem of minimizing the errdf) detals of our method, (d) details of SSD.
energy in Eqn. 19 has an infinite number of solutions, and
:)hbetac_ge;ﬂmr(‘a_nt r:ast(;llﬂgolz Etﬂgs:L; Olrestqg' 1?050‘:']@31?;‘. Tct)trée SSD method; in the latter case we used weights calculated
ositlion Ol:c (;?12 vertgxl of’the mésrﬁ) PP ' X lEJy the inverse-square approach detailed in [45]. Artifacts are
pos! ' present where the leg meets the body in the SSD case—see
Figure 16(left) shows the deformed skeleton and the de-

. : . . Eigure 17 (b), but are absent using our method.
formed dinopet model if translation vectors are not taken into ; . .
A further improvement of this paper over our earlier

account; the red point is the fixed vertex. Figure 16(r'gh\t/?/ork [1] is that by including the translation vector in the

shows the results taking into account the translation vector, .. .~- . . ) .
Diff t choi f the fixed vert lead to diff ptimization process, there is no need to fix an arbitrary vertex
nerent choices of e Tixed vertex may 1ead o dierents e geformed mesh. This is also a key difference between

I;:]al mesh pr)]osmor:_'s, even tho#gh theerformed.me;s.hes hﬂ¥|§ work and the other recent techniques that combine the
eks?rrse s_ta_pe_. OV\{EV?:}]V\; en ma”mg S:n anémglon USf&leton and differential-based (or edge-based) methods [47],
a skeleton, 1t1s important that, as wefl as the mestorma- [48], [49]. By incorporating the translation vector, we keep the

2;:2JI(:j”Z\II;I(;]?otlroe\/vstT‘\eelest(lzgle(jt?)t‘(l)%nozi\rleomn’eﬁ?yMrggﬁg\é?(;?rir:ti skin and the skeleton synchronized, which is very important
' ?thqen generating a long animation sequence.

techniques should ensure that the deformed shape moves wi
the skeleton to give smooth results in animation making.
This provides a sound reason for including the translation VIl. CONTROL BY LINES

term in the error energy function in Eqn. 15. By doing so, Sometimes, we only need to deform part of a model while

we avoid singularity in the matriX< in Eqn. 17 or Eqn. 18, other parts remain more or less unchanged. In such cases, it

and the linear system has a unique solution; the mesh moissonvenient to control the deformation just by moving a few

naturally with the skeleton. lines, rather than having to define and manipulate the whole
skeleton. Our method can easily be extended to do this. We

D. Discussion can also extend our method to twist part of the mesh.

The main difference between our method and earlier ) )
skeleton-based deformation methods is that we use the skéle-D€formation by Lines
ton motion to drive the transformation simplicesratherthan  To base the deformation on a few lines, we place lines
vertices Thus, we make use of theonnectivity information which work in a similar way to bones into the object: certain
in the mesh directly, while they do not. traingles lie inside the control range of each line. We next
Another adavntage is that our method is much simpler sindetermine which triangles are controlled by each line segment,
no weight selection is needed, nor are any other arbitranging the methods in Section IV. Clearly, some triangles may
parameters. not have any corresponding control lines, since they may not
Examples demonstrate that while our method is simplee in any line’s control domain. A simple approach to this
it can nevertheless achieve high quality results. Figure problem is as follows. For a triangle with an associated control
compares deformation results produced by our method aik, M andT in Eqn. 15 is set to the transformation matrix
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although their method does not make use of the simplex
connectivity information in the mesh.

The difference between twisting, and the simpler rotation
and scaling done earlier, is that the transformation matrix for
each bone includes not only a (constant) rotation and scaling,
but also a twist which varies linearly from zero at one end
of the bone to a maximum value at the other. Thus, differ-
ent triangles along the bone require different transformation
equations.

SupposeAB is a twist axis, with twist angles specified to
be 0 at A, and~ at B. Parameterizing the bone with value
0 at A and 1 atB, and having valueg at I, the twist angle
at J is ty. We can compute the twist matrix at using a
process similar to the scaling process in Section V-B. First,
we translated B until A coincides with the original point: the
translation vector igy-1. Then we use a twist transformation
aroundAB, with twist anglet: the transformation matrix in
this twist step igV. Then we translatel B back to its original
place: the translation vector &y2. The twist transformation
matrix W can be calculated as in Eqn. 14, replaciddpy W.

The twist process can be written as

Z=W(@ + Tw1) + Two. (20)

Substituting Eqns. 7 and 11 into Eqn. 20, we get an overall
transformation matrix and translation vector forwhich take
into account the rotation, scaling and twist. The transformation
matrix can be written as

M = WSR, (21)

while the translation vector can be written as
Fig. 18. Top: Armadillo model and control line. Bottom: defard Ar-

madillo. T = W(Ts + TWI) + Two. (22)

As in the previous Section, the ideal transformation matrix
and translation vector of its control line, calculated using th&l for any simplex not controlled by a twist line is set to the
method in Section V-B. For any triangle without a controldentity, with ideal translation vector is zero.
line, M is set to an identity matrix and is set to zero, which  Figure 19 gives an example of twisting the neck of the
means that it tries to keep its original shape. We now solEnopet model byd0 degrees. A twist axis is used along the
Eqgn. 18. neck. However, the whole head needs to turn througlsdinee

However, using the above procedure directly may meancanstant angle. This is achieved by placing a second control
line segment controls triangles over too large a part of thi@e which extends the first into the head, with a constant twist
mesh. Two approaches can be used to avoid this probleitong its length equal to the twist at the top of the neck.
according to the animator’s requirements. Firstly, we can
artificially decide that any triangle whose minimum effective VIIl. CONCLUSION AND FUTURE WORK

distance with penalty is larger tha.[h has no control I|ne._ We have presented an improved mesh deformation method
Secondly, we may let the user directly select an effectiv

. . . v&pich combines theskeleton-base@nd simplex transforma-
domain for each line segment to select those triangles..| : . :
.tion approaches. We first determine the transformation for

should influence, such as a tube centered on the control “B%hes of the skeleton. and then transfer each bone’s trans-

a bounding cuboid, or some other user-defined shape. . . ) .
. . . formation matrix to those triangles it controls. The correspon-
Figure 18 shows deformation of the Armadillo model con- oo . . .
. . . . dence between simplices and bones is determined automati-
trolled by a line segment. Blue and red lines identify the L L
- . cally. We use an optimization method to ensure connectivity
original and deformed control lines. The upper part of thg

Armadillo’s body is rotated and enlarged 2.5 times. etween triangles cpntrolled by d|fferent_bones, while keepmg
the mesh deformation as close as possible to the deformation

of the skeleton. Our method can be used to deform a mesh
B. Deformation using a Twist Axis using control lines and twist axes.
Sometimes, we may wish to twist part of the model, for We may also control the deformation of a mesh by only
example an animal’'s neck. We can control such twists usingreving a few vertices, rather than a skeleton or line segments.
twist axis. Kho [51] uses line segments for similar purposels this case we simply set the transformation matkik to
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Fig. 19. Twisted Dinopet: (a) control lines, (b) original model, (c) tvvisted[
model.
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Fig. 20. (a) Original moon and vertex positions. (b) Deformed moon.
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the identity matrix and translation vectdr to zero forall
triangles. Figure 20 shows deformation of a moon shape by]
choosing new positions for a few constrained vertices: the
blue points identify the original and deformed positions qfs
these constrained points. If large rotations or scaling exist,
this simple approach does not work well since the identity
matrix is far from the real transformation matrix. Howevetyg
many other previous methods have given ways to modify
local intrinsic attributes—see [10], [11], [12]. These method$’]
could be extended to modify the transformation matrix ang,
translation vector to be used in conjunction with our vertex
constraint deformation method. However, investigating such
possibilities is outside the scope of this paper, and we intehla]
to consider them in future.

Foundation of China (Project Number 60673004,60333010).
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