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Shape Deformation using a Skeleton to Drive
Simplex Transformations

Han-Bing Yana, Shi-Min Hua*, Ralph R Martinb, and Yong-Liang Yanga

Abstract—This paper presents a skeleton-based method for
deforming meshes (the skeleton need not be the medial axis).
The significant difference from previous skeleton-based methods
is that the latter use the skeleton to control movement ofvertices
whereas we use it to control thesimplices defining the model. By
doing so, errors that occur near joints in other methods can be
spread over the whole mesh, via an optimization process, resulting
in smooth transitions near joints of the skeleton. By controlling
simplices, our method has the additional advantage that no
vertex weights need be defined on the bones, which is a tedious
requirement in previous skeleton-based methods. Furthermore,
by incorporating the translation vector in our optimisation,
unlike other methods, we do not need to fix an arbitrary vertex,
and the deformed mesh moves with the deformed skeleton. Our
method can also easily be used to control deformation by moving
a few chosen line segments, rather than a skeleton.

Index Terms—Shape Deformation, Skeleton, Simplex Trans-
formation, Animation

I. I NTRODUCTION

Mesh deformation is widely used in computer animation and
computer modeling to represent moving objects of changing
shape. Many techniques have been developed to help artists
sculpt stylized body shapes and corresponding deformations
for 2D and 3D characters, for example. These techniques
include free-form deformation (FFD), multiresolution ap-
proaches, differential methods, and skeleton-based methods.

The skeleton-based approach uses askeleton, in which two
or morebonesmeet at articulating joints, to control shape de-
formation. This allows intuitive control as it naturally describes
the way in which many objects, such as animals, deform: the
muscles and other tissues follow motions of underlying bones
in the skeleton. Such methods are usually controlled by a user-
chosen skeleton, rather than a precisely determined mathemat-
ical medial axis. A serious problem, however, with traditional
skeleton-based methods is that they require a tedious process
of weight selection to obtain satisfactory results, as will be
explained later. Worse, it seems that there is no criterion for
weight selection which is universally applicable toall cases.

In this paper, we present a mesh deformation method
that combines the skeleton-based method and the simplex
transformation method. Although we still control deformation
by a skeleton, our approach has two main differences from
traditional skeleton-based methods. Firstly, we use the skeleton
motion to drive the transformation ofsimplices, rather than
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verticesas done in previous skeleton-based methods. Secondly,
weights arenot used in our method, avoiding the weight
adjustment issue completely; nevertheless our approach gives
high quality results.

Our approach can be applied to both 2D and 3D triangle
meshes. The inputs to our method are the initial mesh, the
initial skeleton, and the deformed skeleton; the skeleton is
here considered to be a set of straight line segments connected
together at joints. The output is the deformed mesh. In 2D,
the simplices which are transformed are the triangles covering
the 2D shape. In 3D, we produce a suitable set of tetrahedra
for use as simplices based on the input 3D surface mesh.

The main steps of our method are as follows:
• We segment the mesh: we allocate each simplex to

a nearby bone, which is thecontrolling bone for this
simplex.

• We find a transformation matrixrelating the initial and
final position of each bone.

• We apply this transformation matrix to the simplices
under that bone’s control.

• We useoptimization to ensureconnectivityof the final
simplices, keeping each simplex transformation as close
as possible to the value determined by its bone.

This idea works not only for control based on adjustment of
the skeleton, but can be extended to useany suitable small
collection of internal lines to control mesh deformation. It can
also be extended toexpandor shrink bones if desired, and to
twist part of the mesh, by defining twist axes.

This paper is an extended version of work reported at a
conference [1]. Compared to our previous paper, the results
are improved in several important places. Firstly, we incor-
porate a translation term in the error energy function used to
determine the deformed mesh: previously, like other simplex
transformation methods, we needed to fix the location of
an arbitrary vertex to locate the deformed mesh relative to
the skeleton. Addition of the translation term renders this
unnecessary. This makes it easier for the user to generate a
long animation sequence, giving an automatic way of ensuring
smooth translation results if the skeleton is moved smoothly.
The second improvement is we have greatly improved the
solving efficiency. The deformation speed is improved by
incorporating Cholesky decomposition and back-substitution,
which makes our algorithm more competitive compared to
other skeleton based methods. Segmentation efficiency is in-
creased. The third improvement is to incorporate graph-cut in
the segmentation method, and inaccurate segmentation results
caused by incorrect joint positions at sharp feature can now
be easily avoided. Finally, we show how to incorporate twists,
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and also extend our skeleton based method to allow control
using a collection of internal lines, not just a skeleton; we give
details and discuss limitations of this method.

II. RELATED WORK

One of the best known methods for carrying out deforma-
tion is free-form deformation. The classic FFD method [2]
encloses a shape in an elastic lattice control volume, such
as a Bézier volume, then deforms the volume by moving its
control vertices: as a result, the shape inside is deformed.
This technique has been extended to use more general lattice
structures [3].Various curve-based deformation methods [4],
[5]can also be classified as similar space-warping deformation
methods. Such space-warping methods are very efficient, but
they do not provide easy control over the details of complex
models.

Multiresolution methods[6], [7], [8] have also been devel-
oped to deform shapes with intricate geometry. A detailed
shape is first decomposed into a base shape and geometric
details. The base shape is deformed using some suitable
technique, and then the geometric details are added back. The
base mesh can be deformed using FFD or other approaches.
This class of approach has the advantage of being efficient,
but care must be taken in how the details are added back if
convincing results are to be obtained.

Differential deformation methodshave become popular re-
cently [9], [10], [11], [12]. Laplacian coordinates [9] are based
on representing surface detail as differences from the local
mean. Poisson mesh methods [12] are based on manipulating
gradients of the mesh’s coordinate functions, and then recon-
structing the surface from the Poisson equation. In [13], sur-
face Laplacian coordinates are extended to volumetric Lapla-
cian coordinates, allowing volume-preserving deformation. Shi
et al [14] developed a fast multigrid technique tailored for
gradient field mesh deformation. Huang [15] use cotangent
forms to represent Laplacian coordinates, which are invariant
under rotation, scaling and translation. This method needs to
solve a nonlinear system, so a subspace technique is used to
accelerate the solving process.

Simplex transformationis another approach to deformation
and morphing. The use of a matrix decomposition of a
global transformation was proposed in [16] as a means of
carrying out morphing. This method was extended tolocal
transformations by [17], in which each triangle or tetrahedron
is transformed independently, and the results are then made to
connect consistently using an optimization method. Simplex
transformation has also been used with surface triangle meshes
to perform deformation learnt from existing examples [18],
[19]. This method was developed to control shape deformation
by partition the mesh and control each partition by proxy ver-
tices [20]. Botsch [21] give a mathematical proof which shows
an equivalence between the simplex transformation method
and those methods based on differential representations.

All of the above classes of methods have a similar disad-
vantage, in that they do not take into account the natural way
in which many shapes’ features are controlled. For example,
vertebrate animals have a skeleton, and many other articulating

objects such as robots can be modeled as if they also did.
The shapes and movement of such objects can be understood
in terms of the motion of a skeleton. So this provides a
more intuitive approach to controlling the deformation of
such shapes. Such ideas are also referred to asskinning[22],
envelopes[23] or skeletal subspace deformation[24].

Existing skeleton-based algorithms define the final position
of a point in the mesh as a weighted linear combination of
the initial state of the point projected into several moving
coordinate frames, one frame for each bone. The position of
a pointp′ after deformation can be written as:

p′ =

n∑

k=1

wkpMk, (1)

wherep is the point’s initial position,Mk is a transformation
matrix that transforms bonek from its initial position to
its new position,wk is the weight of this point relative to
bonek, and n is the number of bones. Because in Eqn. 1,
each point is controlled by multiple bones, careful choice
of weights wk is needed, both to avoid self-intersections,
especially near the joints, and also to keep the resulting shape
smooth. Appropriateweight selectionis an extremely tedious
process if done manually. Thalmann [25] proposed the use
of virtual bones to control the point positions, which avoids
the use of weights. However, this method only allows a point
to be influenced by at most two segments. Mohr [26] gave
reasons why the traditional skeleton-based method is incapable
of expressing complex deformations, and he suggested an
interactive method to control weights of points.

In recent years, work has focused on how to learn weights
from examples [24], [27], [28]. Such learning methods mainly
differ in detail of how they represent the point displacements,
and in the particular interpolation method used. However, it
seems thatno single method works well inall cases [29].
To overcome this problem, the latter paper proposes a multi-
weight enveloping method: eachcomponentof the matrixMk

is given aseparateweight to provide maximum flexibility,
instead of a single weight for the whole matrix. Clearly,
this means even more weights must be adjusted. A detailed
introduction to the skinning method of learning deformation
from examples is given in [30]. James et al. [28] describe a
skinning method without the need for explicitly specifying
a skeleton, where a virtual skeleton is generated by the
mean shift clustering method. There has also been much
work [28], [30], [31] on accelerating skeleton-based methods
using hardware.

In short, the basic problem with skeleton-based methods is
that each point in the mesh is updated independently using
Eqn. 1, which requires thewi to be carefully chosen to
avoid gaps and artifacts. However, the points are embedded
in a shape, and are related. The mesh providesconnectivity
constraints; previous skeleton-based methods have not directly
used this information. We use this information explicitly, to
our advantage. By retaining a skeleton, we keep its merits of
providing a natural and easily understood control mechanism.
By using the connectivity information, we avoid the weight
adjustment issue arising in traditional skeleton-based methods,
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and instead solve a linear equation to perform a similar task.
This approach is easier, and gives high quality results.

There has been much work on skeletonization [32], [33],
[34] and segmentation [35], [36], [37], [38] as independent
problems, or on creating a skeleton and corresponding seg-
mentation together [39], [40], [41], [42], [43]. In this paper, we
interested in the segmentation method assuming a given skele-
ton. So we only focus on the methods that can create skeleton
and segmentation together, or those can create segmentation
by skeleton. Katz [39] compute a fuzzy decomposition by
an iterative clustering scheme, the refine the decomposition
by Graph-Cut method using geodesic and angular distances.
Further more, their segmentation can be used to compute a
skeleton. Lien [40] suggested how to create a skeleton and
perform segmentation using an iterative approach, but this is
not ideal as the skeleton changes during iteration. Cornea [41]
also proposed segmentation method which following skeleton
creation. This method segment the mesh by tracing the field
lines, which was defined during skeleton creation. So it also
does not appropriate to be used in segmentation with given
skeleton.

In many cases, artists prefer to specify a skeleton, in order
to be able to achieve the desired animation control, rather
than having an automatically determined skeleton. So it is
useful to perform segmentation from a given skeleton directly,
without using the meta information in the skeleton creation.
Li [42] showed how to obtain a segmentation corresponding
to a given skeleton using a space sweeping method, but this
does not seem to work well if the skeleton is rather coarse. A
similar method was proposed in [43], while it takes the shortest
geodesics between feature points as borders instead of cross-
section sweeping line. We thus give a new method to segment
the model which takes into account both Euclidean distance
and shortest path distance between simplices and skeleton
bones. Our results show that this method while simple, is
effective.

For further discussions on skeletons and segmentation, the
reader is referred to the excellent survey by Cornea [44].

Bloomenthal [45] used a segment-based skeleton to deform
the shape’s mathematical medial axis, which was then used
to drive the shape deformation. Yoshizawa [46] extended this
work by combining it with the Laplacian coordinates approach.

Whilst revising this paper, [47] came to our attention. Some
of its techniques are similar to those in our earlier paper [1],
but it differs in the following ways. Firstly, we proposed a
segmentation method by using given skeleton. Secondly, we
try to keep the transformation matrix of each mesh simplex as
similar as possible to the corresponding bone’s transformation,
while they try to keep mesh edge vectors as close as possible
to the transformed original mesh edge vectors. Thirdly, like in
our conference paper [1], their error energy function has no
term to keep the mesh moving together with the skeleton. As
pointed out earlier, this means that at least one vertex must
be fixed before solving the optimization function, which our
current work overcomes. This will be detailed discussed in
Section VI-C. It seems that more and more people show their
interest in combining the skeleton-based deformation methods
and the deformation methods using mesh local attribute, such

as [48], [49]. The difference between our paper and theirs is
similar to our paper and [47].

In the rest of this paper, we outline basic concepts con-
cerning simplex transformations and skeletons in Section III.
We first show our mesh segmentation method based on the
skeleton in Section IV, then show how to calculate the bones’
transformations in Section V. Section VI and Section VII give
our skeleton-based mesh deformation methods, illustrating
them with practical results. Conclusions and discussions are
given in Section VIII. Both 2D and 3D triangle meshes are
considered.

III. S IMPLEX TRANSFORMATIONS ANDSKELETONS

A. Simplex Transformations

A simplex is the simplest possible polytope in a given space:
triangles and tetrahedra are the highest dimension simplices
in 2D and 3D. Given two such simplicesS1 andS2 in some
space, there exists a unique transformation that changesS1

into S2. This can be written as:

vi = Mui + T, (2)

where M is an affine transformation matrix representing
rotation and shape change information,T is the translation
vector, theui are the vertices ofS1, and the vi are the
corresponding vertices ofS2. M andT can be calculated from
the vertex coordinates ofS1 andS2, as follows:

M = V U−1, (3)

where in 2D,

V =
[

v1 − v3 v2 − v3

]
, (4)

U =
[

u1 − u3 u2 − u3

]
,

and in 3D,

V =
[

v1 − v4 v2 − v4 v3 − v4

]
, (5)

U =
[

u1 − u4 u2 − u4 u3 − u4

]
.

Having foundM , it can be substituted into Eqn. 2 to findT .

B. Skeletons

The strict mathematical skeleton, or medial axis, is the
locus of the centers of all maximal spheres contained within
the object. Generally it is quite complex even for simple 3D
shapes, and may contain sheets as well as curvilinear elements.
It is also sensitive to small perturbations of the shape boundary.
For simplicity, most skeleton-based deformation methods use
an approximate skeleton to control deformation, consisting of
straight lines of zero thickness—bones—connected at articu-
lated joints.

In many cases, artists prefer to create the skeleton by
hand, to give the desired degree of control over the shape.
It is not very difficult to create such an approximate skeleton
interactively. Automatic methods of skeleton generation also
exist, such as [34], [42].
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IV. TRIANGLE MESH SEGMENTATION

In this section, we consider how to segment the triangle
mesh using the skeleton, which decides which triangles are
controlled by each bone. The results of our segmentation
method intuitively correspond to near-rigid components, such
as a foot, a lower leg, an upper leg, and so on. We still follow
the basic segmentation approach presented in our previous
paper [1], but some important improvements have been made
to accelerate it and to overcome previous limitations. We
first summarise the segmentation method used in our previous
work, and then explain our improvements.

A. Mesh Segmentation Using the Skeleton

We now briefly review the segmentation method from our
previous work; further details are given in [1]. In this approach,
each triangle is controlled by justone bone. We thus need
to segmentthe model according to the given skeleton, or in
other words, decide which bone should be used to control
each triangle. Having done this, we can then decide how each
triangle should deform. It should be noted that although we
create a tetrahedron for each triangle for the purposes of 3D
deformation as discussed in Section VI-B, the tetrahedra need
not be created during the segmentation phase. We segment
the mesh according to Euclidean distance and shortest path
distances on the mesh as follows:

1) Decide the control domain of each bone using range
planes placed at the end of each bone. Range planes
decide which triangles a bone can possibly control. At
bones with free ends, range planes are orthogonal to the
bones; where bones meet, range planes bisect the angle
between bones.

2) Decide which of those bones actually controls each
triangle, by choosing the bone with minimumeffective
distance with penaltyto the triangle [1]. Theeffective
distance with penaltycan be written as:

deffpen = deff + nδ, (6)

wheredeff is theeffective distance, andn is the number
of intersections of theeffective lineand the mesh bound-
ary. Effective distanceis the distance from the triangle
center to the bone along theeffective line, a line which
takes into account the orientations of the range planes
at the ends of the bones. The idea here is to that if we
have to pass outside the mesh on a shortest line from
the bone to the simplex, such a bone is (probably) not
a good choice for the controlling bone for this simplex.
A binary tree is constructed to accelerate the calculation
of the number of intersections.

3) Check if the minimumeffective distance with penaltyis
less than a threshold—if so, it means the simplex can be
seenby one or more bones (i.e. the straight line referred
to above does not cross the mesh boundary).

a) If less than the threshold: the bone with the min-
imum effective distance with penaltycontrols this
simplex.

b) If more than the threshold: calculate theshortest
path distancein the mesh from the simplex to the

(a) (b)

(c)

Fig. 1. 2D skeleton control domain: (a) cartoon character, (b) skeleton, (c)
skeleton control domain.

bones for which it is within range. The bone with
the shortest path distance is the control bone.

Normally, a skeleton is thought of as lying within the
volume defined by the mesh. However, in our method, we
require anyfree ends of bones of the skeleton (i.e. ends not
connected to other bones) to lie justoutsidethe mesh, to ensure
that each bone properly controls all the triangles in its control
domain. If a given skeleton has free ends within the mesh, it is
straightforward to extend them outside the mesh automatically.

Figures 1–3 show segmentation results using this method.
Figure 1(a) shows a 2D cartoon character, Figure 1(b) shows a
corresponding 2D skeleton and Figure 1(c) shows which bone
controls each triangle, as determined by the method above.
Triangles of a given color are controlled by the bone of the
same color. Figure 2(top) shows a 3D skeleton for the Dinopet,
and Figure 2(bottom) shows the control domain of each bone.

B. Accelerating Segmentation

In 3D, due to the potentially very large size of the mesh,
it would be very time consuming to test all bones against
all triangles to decide the controlling bone for each triangle.
It is easy to show that if a given triangle is controlled by a
particular bone, then each of its neighbouring triangles must
be controlled by the same bone, or some bone adjacent to that
bone. This observation can be used to accelerate segmentation
via a traversal process.

We start by selecting a triangleintersectedby a bone with
a free end as the initial triangle. Clearly, this triangle can be
seen from that bone, and has minimumeffective distance with
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Fig. 2. Top: skeleton. Bottom: control domain of Dinopet.

Fig. 3. Left: skeleton. Right: control domain of woman.

(a) (b) (c)

Fig. 4. Segmentation affected by the joint position.

penaltyto that bone, so is controlled by it. We next find the
control bones of those triangles adjacent to this triangle, using
the same criteria as before, but only considering the same bone
and bones connected to it. We then pass to the neighbours
of these triangles, and so on. In principle, it is possible to
construct extreme examples for which this accelerated method
does not work well, but in practice, this method greatly speeds
the segmentation process, giving greater savings the more
bones there are in the skeleton. Of course, a similar method can
also be used to accelerate 2D segmentation, but the generally
smaller mesh sizes lead to reduced benefits.

The time spent in creating the segmentation and BSP tree
creation for various 3D models is listed in Table I in Sec-
tion VI-B. Experiments show that our segmentation algorithm
is very effective and robust.

C. Overcoming Limitations

Our segmentation method is based on the skeleton, and thus
its results depend on the positions of joints. In places where
features are not sharp, positions of joints and corresponding
range planes are not crucial. However, they must be carefully
located where the mesh has sharp features.

For example, Figure 4(a) shows a mesh with a sharp feature
and an inaccurately placed skeleton joint: Figure 4(b) is the
corresponding segmentation result created from the skeleton.
Obviously, the segmentation result is not appropriate, and will
adversely influence the final deformation results.

In our previous work, we provided an interactive approach
allowing the artist to modify both the joint positions and make
small changes to range line and range plane orientations. Such
an approach is labour intensive and requires careful work.

As an alternative, in this paper, we propose the use of a
graph-cut method to optimize the segmentation boundaries to
accommodate sharp features, following [39]. If a feature exists
near the boundary where two segmentation components meet,
we do the following:

1) Find the boundary vertices between these two compo-
nents, and generate an extended region on either side for
boundary optimization.

2) Build the dual graph of the extended region. In this
dual graph, compute the capacity of each edge based on
dihedral angles.

3) Find the optimized boundary by applying a maximum
flow algorithm.
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(a) (b) (c) (d)

Fig. 5. Optimization process for inaccurately placed joint position.

Figure 4(c) gives the final segmentation result optimized from
the result in Figure 4(b).

If several components meet near a sharp feature, we use
a hierarchical algorithm to refine the segmentation result
from coarse to fine. First, we allocate these components to
two large regions, where each large region contains one or
several connected components. The boundary between the two
large regions is optimized with respect to the feature. The
optimization algorithm is then applied iteratively by dividing
each large region into two smaller regions, until each region
has only one component.

Figure 5shows the optimization process for one leg of the
Dinopet. Figure 5(a) gives the mesh and the inappropriate
placed skeleton, where its ankle joint and heel joint are inac-
curately placed. Figure 5(b) shows the original segmentation
obtained by the method in Section IV-A. Figure 5(c) shows
the improved segmentation result after the first round optimiza-
tion. The boundary at the knee is smoother, while the two toes
are combined to give one region, with a smooth boundary at
the ankle. In Figure 5(d), the boundary between two toes is
optimized. This boundary optimization process is fast enough
to interactively display its effects on the segmentation: much
less time is taken than for segmenting the whole model as
given in Table I.

We should note that this maximum flow algorithm is based
on dihedral angle calculations, which can give good results at
places wheresharp featuresexist, but which works less well in
smooth regions. Thus, we only use this method to interactively
optimize the component boundaries near sharp feature when
we are not satisfied, after performing segmentation as in
Section IV-A. Small variations in joint positions insmooth
regions have very little visual effect on deformation results,
and such optimization is not necessary there.

V. TRANSFORMATION OFBONES

In our method, simplex transformations are derived from
the transformations of bones. This section discusses how the
bones’ transformations are computed.

A. Transformation for 2D Bones

Given an initial skeleton and the corresponding deformed
skeleton determined by the user, the transformation matrix for

Fig. 6. 2D bone transformation.

each bone can be calculated. Figure 6 shows a bone atA1B1

in the initial skeleton, and atA2B2 in the deformed skeleton.
We initially calculate the bone transformation matrix without
scaling, as bones normally have a fixed length. We later show
how to take scaling into account if additionally required. When
we have the transformation matrix of each bone, the translation
vectors can be easily calculated. In the following, we use˜ to
represent quantities related to bones.

Without scaling, we translateA1B1 so thatA1 coincides
with the origin, the translation vector being̃TR1. A1B1 is then
rotated anticlockwise through an angleθ around the origin
until it lies in the same direction asA2B2. We then translate
A1B1 so thatA1 coincides withA2, the translation vector
being T̃R2. This transformation process can be expressed as:

ṽ = R̃(ũ + T̃R1) + T̃R2, (7)

where ũ is any point on the boneA1B1, and ṽ is the
corresponding point after transformation. The transformation
matrix is given by

R̃ =

[
cos θ − sin θ
sin θ cos θ

]
, (8)

and the translation vector is

T̃R = R̃T̃R1 + T̃R2. (9)

Now consider the case with scaling. Suppose the scale factor
is α, so that after deformation, the bone has a lengthα times
its original length. After translatingA1B1 as before, using the
translation vector̃TS1, we rotate it untilB1 is located on the
x axis, using a rotation matrix̃RS1. We then scaleA1B1 until
it has the same length asA2B2, using a scaling matrix̃S:

S̃ =

[
α 0
0 β

]
, (10)

whereβ is the scale factor in the direction perpendicular to
the bone. Usually, the animator will chooseβ to be1.0, or the
same asα, but may also use other values if desired. Finally we
rotateA1B1 into the same orientation asA2B2, and translate
A1B1 until A1 coincides withA2; the rotation matrix involved
is R̃S2, and the translation vector is̃TS2. Overall, we can write:

w̃ = R̃S2S̃xR̃S1(ṽ + T̃S1) + T̃S2. (11)

whereṽ is a point on boneA1B1 after rotation, and̃w is the
corresponding point after scaling. The overall transformation
matrix in this step is given bỹS = R̃S2S̃xR̃S1.
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Fig. 7. 3D bone transformation.

Substituting Eqn. 7 into Eqn. 11, we can write the overall
transformation as the combination of a rotation and a scaling,

M̃ = S̃R̃, (12)

where if there is no scaling,̃S is a unit matrix. The whole
translation vector is now

T̃ = S̃(T̃R + T̃S1) + T̃S2. (13)

For the later convenience, we writẽTS = S̃(T̃R + T̃S1)+ T̃S2

B. Transformation for 3D Bones

We now consider how to calculate the transformation matrix
for bones in 3D. In Figure 7, supposeA1B1, A2B2 represent
a bone in 3D before and after deformation. We translateA1B1

so thatA1 lies at the origin. We then create a unit vectorN
based at the origin, perpendicular to bothA1B1 and A2B2,
and rotateA1B1 aroundN until A1B1 is in the same direction
asA2B2; let θ be the rotation angle. Finally we translateA1B1

until A1 coincides withA2. The transformation matrix̃R can
be calculated in a similar way to the 2D case and is found to
be:

R̃ =




a2 + ρbcν abλ + cµ acλ − bµ
abλ − cµ b2 + ρacν bcλ + abµ
acλ + bµ bcλ − abµ c2 + ρabν


 , (14)

whereN = (a, b, c), µ = sin θ, ν = cos θ, λ = (1 − cos θ),
ρab = a2 + b2, ρbc = b2 + c2, ρac = a2 + c2. If scaling
is also required, we can determine the scale matrixS as in
Section V-A. The overall transformation matrix has the same
form as in Eqn. 12, while the translation vector for each bone
has the same form as given in Eqns. 9 and 13.

VI. T RIANGLE MESH DEFORMATION

We now discuss how to drive the triangle mesh deformation
using the skeleton transformations.

A. 2D Triangle Mesh Deformation

If every triangle were to transform rigidly in the same
way as its controlling bone, gaps or overlaps would occur
between the triangles controlled by adjacent bones, causing
tears or overlaps in the object. We need to enforce vertex
consistency requirements to ensure the mesh retains its original
connectivity.

We do this using anoptimizationmethod, which enforces
connectivity while trying to keep each simplex transformation

(a) (b)

Fig. 8. (a) Deformed 2D skeleton. (b) Deformed cartoon character.

as close as possible to that of its control bone. An error
function is used to represent the difference between the actual
triangle deformation and the deformation indicated by the
control bone, defined by

E =

n∑

i=1

Ai(‖Mi − M̃i‖
2
F + α‖Ti − T̃i‖

2
2), (15)

wheren is the number of triangles in the mesh,Mi is the actual
transformation matrix for theith triangle, given by Eqn. 3.Ti

is the actual translation vector, which can be calculated by
Eqn. 2.M̃i is the ideal transformation matrix of this triangle,
which is the transformation matrix of the controlling bone of
this simplex and is given by Eqn. 12.̃Ti is the ideal translation
vector and is given by Eqn. 13.F is the Frobenius norm.α
is the square of the reciprocal of the diagonal length of the
original mesh bounding box, which is used to eliminate the
influence of the mesh size.Ai is the area of theith triangle,
which is used to take account of the triangle area: large
triangles should provide a greater contribution to the error
energy function. We minimizeE to get the best deformation
results while ensuring mesh connectivity: the variables in
the minimization problem are the vertex coordinates of the
deformed mesh.

This classical quadratic optimization problem can be trans-
formed into a linear equation by setting the gradient ofE to
zero, which can be written in the form:

K ′X ′ = d′, (16)

where this linear system factors into2 independent subsystems
corresponding to thex and y coordinates of the deformed
mesh; furthermore, the coefficient matrix for each subsystem
is the same. We obtain

KT KX = KT dx, KT KY = KT dy, (17)

where X and Y are thex and y coordinate vectors of the
deformed mesh, of dimensionm, the number of vertices in
the mesh.K is a sparse matrix of sizem × m, anddx and
dy are vectors with dimensionm. KT is the transpose form
of matrix K. We use direct Cholesky decomposition and back
substitution to solve these sparse linear systems.
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(a) (b)

Fig. 9. Distortion spreading: (a) area change, (b) angle change.

Figure 8 shows a deformed skeleton and the resulting
deformed mesh for the cartoon character in Figure 1. The
corresponding mesh has251 vertices, and 0.02s were required
to calculate the result on a 3.2Ghz Pentium 4 machine.

The main difference between our method and traditional
skeleton-based deformation methods is that we use bones to
drive the triangles while they use bones to drivevertices.
Although each triangle tries to follow the transformation
determined by its control bone, it cannot follow it absolutely—
otherwise there would be gaps between adjacent triangles,
especially for those located near joints. Note, on the other
hand, that if only a few triangles located near joints changed
their shape to preserve connectivity while others precisely
followed the transformations given by their control bones,
the error energy defined in Eqn. 15 would be very large. By
spreading such triangle distortion to surrounding triangles, the
error is greatly reduced: our optimization method results in
triangle shapes which are as close as possible to the original
triangle shapes.

In Figure 9, an example is given to show how the distortion
varies according to distance from a joint. The distortion extent
can be described by area change and internal angle change of
triangles. Figure 9 (a) represents the triangle area change over
the mesh. The triangle area change is calculated by|△A|/A,
whereA is the original triangle area, and|△A| is the triangle
area change after deformation. Figure 9 (b) represents the
triangle angle change, which is calculated by|

∑3

i=1 △αi|,
where |△αi| is an internal angle change in the triangle. In
these images, the lighter the triangle color, the less the triangle
distortion. The distortion is the heaviest near joints, but not
limited at joints. The distortion spread to the middle of the
bone and to the free joints, while become lighter. The triangles
near the middle of the bone and the free joints always have
the lightest distortion.

We can also usestrain [50], a quantitative analysis tool of
deformation, to analyze the distortion extent of our deforma-
tion results. Using strain, we get very similar results as in
Figure 9, that the triangles deformation is spread from joints
to the middle of bone and free joint, while become lighter.

B. 3D Triangle Mesh Deformation

The above method can also be extended to a 3Dtetrahedron
mesh, but in practice surfacetriangle mesh models are far
more widely used in computer graphics. Furthermore, trian-
gle mesh models have far fewer elements than tetrahedron
models—the latter would require much higher processing
times. Thus, for simplicity, here we consider the 3D triangle
mesh case, rather than the tetrahedron case.

With regards to deformation, the 3D triangle mesh case
is very different from the 2D triangle mesh case, because a
triangle is not a maximal dimension simplex in 3D, nor is
there a unique transformation matrix for changing one triangle
into another. Sumner [18] gave an ingenious way of extending
a simplex transformation method to a 3D triangle mesh by
constructing a tetrahedron for each triangle. Here, we basically
use the same method for constructing a tetrahedron, except that
we put the new vertex above the centroid of the triangle rather
than over one of its vertices. Doing so makes the following
equations symmetric inx, y, and z coordinates, simplifying
the coding of Eqn. 18.

We add a fourth vertex to each triangle of both the initial
and deformed mesh to give a tetrahedron. For the initial mesh,
the fourth vertex is added in the normal direction over the
triangle’s centroid. Letv1, v2, v3 be the vertices of a triangle
on the initial mesh. The fourth vertex is placed at

v4 =
(v1 + v2 + v3)

3
+

(v2 − v1) × (v3 − v2)√
(v2 − v1) × (v3 − v2)

.

The distance betweenv4 and the centroid is determined in
such a way as to ensure a well-shaped tetrahedron. The above
equation is only used to calculatev4 in the initial mesh;
vertices in the deformed mesh, includingv4, are determined
by the optimization process.

The 3D triangle mesh is now deformed using the same
optimization approach as for the 2D triangle mesh in Sec-
tion VI-A. In this case the 3D version of Eqn. 16 separates
into three independent linear subsystems:

KT KX = KT dx, KT KY = KT dy, KT KZ = KT dz. (18)

The dimension of the vectors in Eqn. 16 is nowm + k, and
K is an (m + k) × (m + k) matrix, for a mesh withm
vertices andk faces. We use direct Cholesky decomposition
and back substitution to efficiently solve these large sparse
linear equations.

Figure 10 and Figure 11 give the Dinopet skeletons and
results using our technique. Figures 12–15 illustrate other 3D
deformation results. The first model in each Figure is the
original model; others are deformed results produced by our
method. All results were calculated on a 3.2Ghz Pentium 4
machine. Table I shows the times taken to deform the 3D
models illustrated in this paper for one time, listing separately
times for BSP Tree Creation, Segmentation, Cholesky decom-
position, and Back Substitution for each deformation.

C. Deformation without Translation

In Section VI-A and VI-B, the error energy function con-
tains both a transformation matrix and a translation vector.
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Fig. 10. Dinopet skeleton.

Fig. 11. Dinopet model.

Fig. 12. Armadillo model.
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Fig. 13. Horse model.

Fig. 14. Female model.

Fig. 15. Palm model.

As done in our previous work [1], it is possible to create an
error energy function which ignores the translation vector. The
simplified energy function is:

E =

n∑

i=1

Ai‖Mi − M̃i‖
2
F , (19)

which can essentially be solved as before, with one significant
difference—this basically affects the position of the deformed
model, and has an insignificant effect on its shape.

In this case, if the deformed mesh is translated by some
vector, the translated mesh will have the same error energy as
the untranslated mesh: translation does not change the error
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Arma Dinopet Horse Female Palm

Vertices 50852 13324 8433 30432 12782
BSP Tree 1.21 0.42 0.31 0.81 0.42
Segmentation 1.48 0.37 0.28 0.74 0.36
Cholesky 5.13 0.92 0.57 2.97 0.89
Back Substitution 0.69 0.10 0.06 0.33 0.10

TABLE I
T IMING INFORMATION

Fig. 16. Left: Deformation without translation. Right: Deformation with
translation.

energy in Eqn. 19. Thus, the problem of minimizing the error
energy in Eqn. 19 has an infinite number of solutions, and
the coefficient matrixK in Eqn. 17 or Eqn. 18 is singular. To
obtain a unique solution, the simplest approach is to fix the
position of one vertex of the mesh.

Figure 16(left) shows the deformed skeleton and the de-
formed dinopet model if translation vectors are not taken into
account; the red point is the fixed vertex. Figure 16(right)
shows the results taking into account the translation vector.

Different choices of the fixed vertex may lead to different
final mesh positions, even though the deformed meshes have
the same shape. However, when making an animation using
a skeleton, it is important that, as well as the meshdeforma-
tion following the skeleton deformation, any meshmovement
should also follow the skeleton movement. Mesh deformation
techniques should ensure that the deformed shape moves with
the skeleton to give smooth results in animation making.

This provides a sound reason for including the translation
term in the error energy function in Eqn. 15. By doing so,
we avoid singularity in the matrixK in Eqn. 17 or Eqn. 18,
and the linear system has a unique solution; the mesh moves
naturally with the skeleton.

D. Discussion

The main difference between our method and earlier
skeleton-based deformation methods is that we use the skele-
ton motion to drive the transformation ofsimplices, rather than
vertices. Thus, we make use of theconnectivity information
in the mesh directly, while they do not.

Another adavntage is that our method is much simpler since
no weight selection is needed, nor are any other arbitrary
parameters.

Examples demonstrate that while our method is simple,
it can nevertheless achieve high quality results. Figure 17
compares deformation results produced by our method and

(a) (b)

(c) (d)

Fig. 17. Deformation using our method and SSD: (a) our method, (b) SSD,
(c) details of our method, (d) details of SSD.

the SSD method; in the latter case we used weights calculated
by the inverse-square approach detailed in [45]. Artifacts are
present where the leg meets the body in the SSD case—see
Figure 17 (b), but are absent using our method.

A further improvement of this paper over our earlier
work [1] is that by including the translation vector in the
optimization process, there is no need to fix an arbitrary vertex
of the deformed mesh. This is also a key difference between
this work and the other recent techniques that combine the
skeleton and differential-based (or edge-based) methods [47],
[48], [49]. By incorporating the translation vector, we keep the
skin and the skeleton synchronized, which is very important
when generating a long animation sequence.

VII. C ONTROL BY L INES

Sometimes, we only need to deform part of a model while
other parts remain more or less unchanged. In such cases, it
is convenient to control the deformation just by moving a few
lines, rather than having to define and manipulate the whole
skeleton. Our method can easily be extended to do this. We
can also extend our method to twist part of the mesh.

A. Deformation by Lines

To base the deformation on a few lines, we place lines
which work in a similar way to bones into the object: certain
traingles lie inside the control range of each line. We next
determine which triangles are controlled by each line segment,
using the methods in Section IV. Clearly, some triangles may
not have any corresponding control lines, since they may not
be in any line’s control domain. A simple approach to this
problem is as follows. For a triangle with an associated control
line, M̃ and T̃ in Eqn. 15 is set to the transformation matrix
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Fig. 18. Top: Armadillo model and control line. Bottom: deformed Ar-
madillo.

and translation vector of its control line, calculated using the
method in Section V-B. For any triangle without a control
line, M̃ is set to an identity matrix and̃T is set to zero, which
means that it tries to keep its original shape. We now solve
Eqn. 18.

However, using the above procedure directly may mean a
line segment controls triangles over too large a part of the
mesh. Two approaches can be used to avoid this problem,
according to the animator’s requirements. Firstly, we can
artificially decide that any triangle whose minimum effective
distance with penalty is larger thanδ has no control line.
Secondly, we may let the user directly select an effective
domain for each line segment to select those triangles it
should influence, such as a tube centered on the control line,
a bounding cuboid, or some other user-defined shape.

Figure 18 shows deformation of the Armadillo model con-
trolled by a line segment. Blue and red lines identify the
original and deformed control lines. The upper part of the
Armadillo’s body is rotated and enlarged 2.5 times.

B. Deformation using a Twist Axis

Sometimes, we may wish to twist part of the model, for
example an animal’s neck. We can control such twists using a
twist axis. Kho [51] uses line segments for similar purposes,

although their method does not make use of the simplex
connectivity information in the mesh.

The difference between twisting, and the simpler rotation
and scaling done earlier, is that the transformation matrix for
each bone includes not only a (constant) rotation and scaling,
but also a twist which varies linearly from zero at one end
of the bone to a maximum value at the other. Thus, differ-
ent triangles along the bone require different transformation
equations.

SupposeAB is a twist axis, with twist angles specified to
be 0 at A, and γ at B. Parameterizing the bone with value
0 at A and 1 atB, and having valuet at I, the twist angle
at J is tγ. We can compute the twist matrix atJ using a
process similar to the scaling process in Section V-B. First,
we translateAB until A coincides with the original point: the
translation vector is̃TW1. Then we use a twist transformation
aroundAB, with twist angletγ: the transformation matrix in
this twist step is̃W . Then we translateAB back to its original
place: the translation vector is̃TW2. The twist transformation
matrix W̃ can be calculated as in Eqn. 14, replacingR̃ by W̃ .
The twist process can be written as

z̃ = W̃ (w̃ + T̃W1) + T̃W2. (20)

Substituting Eqns. 7 and 11 into Eqn. 20, we get an overall
transformation matrix and translation vector forJ , which take
into account the rotation, scaling and twist. The transformation
matrix can be written as

M̃ = W̃ S̃R̃, (21)

while the translation vector can be written as

T̃ = W̃ (T̃S + T̃W1) + T̃W2. (22)

As in the previous Section, the ideal transformation matrix
M̃ for any simplex not controlled by a twist line is set to the
identity, with ideal translation vector is zero.

Figure 19 gives an example of twisting the neck of the
Dinopet model by90 degrees. A twist axis is used along the
neck. However, the whole head needs to turn through thesame
constant angle. This is achieved by placing a second control
line which extends the first into the head, with a constant twist
along its length equal to the twist at the top of the neck.

VIII. C ONCLUSION AND FUTURE WORK

We have presented an improved mesh deformation method
which combines theskeleton-basedand simplex transforma-
tion approaches. We first determine the transformation for
bones of the skeleton, and then transfer each bone’s trans-
formation matrix to those triangles it controls. The correspon-
dence between simplices and bones is determined automati-
cally. We use an optimization method to ensure connectivity
between triangles controlled by different bones, while keeping
the mesh deformation as close as possible to the deformation
of the skeleton. Our method can be used to deform a mesh
using control lines and twist axes.

We may also control the deformation of a mesh by only
moving a few vertices, rather than a skeleton or line segments.
In this case we simply set the transformation matrix̃M to
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(a) (b)

(c)

Fig. 19. Twisted Dinopet: (a) control lines, (b) original model, (c) twisted
model.

(a) (b)

Fig. 20. (a) Original moon and vertex positions. (b) Deformed moon.

the identity matrix and translation vector̃T to zero for all
triangles. Figure 20 shows deformation of a moon shape by
choosing new positions for a few constrained vertices: the
blue points identify the original and deformed positions of
these constrained points. If large rotations or scaling exist,
this simple approach does not work well since the identity
matrix is far from the real transformation matrix. However,
many other previous methods have given ways to modify
local intrinsic attributes—see [10], [11], [12]. These methods
could be extended to modify the transformation matrix and
translation vector to be used in conjunction with our vertex
constraint deformation method. However, investigating such
possibilities is outside the scope of this paper, and we intend
to consider them in future.
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