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A B S T R A C T

Real-time portrait segmentation plays a significant role in many applications on mobile
device, such as background replacement in video chat or teleconference. In this paper,
we propose a real-time portrait segmentation model, called PortraitNet, that can run ef-
fectively and efficiently on mobile device. PortraitNet is based on a lightweight U-shape
architecture with two auxiliary losses at the training stage, while no additional cost is
required at the testing stage for portrait inference. The two auxiliary losses are bound-
ary loss and consistency constraint loss. The former improves the accuracy of boundary
pixels, and the latter enhances the robustness in complex lighting environment. We
evaluate PortraitNet on portrait segmentation dataset EG1800 and Supervise-Portrait.
Compared with the state-of-the-art methods, our approach achieves remarkable perfor-
mance in terms of both accuracy and efficiency, especially for generating results with
sharper boundaries and under severe illumination conditions. Meanwhile, PortraitNet
is capable of processing 224 × 224 RGB images at 30 FPS on iPhone 7.

1. Introduction

Semantic image segmentation with high accuracy and effi-
ciency using convolutional neural networks has been a popu-
lar research topic in computer vision. With the rapid develop-
ment of mobile techniques, automatic portrait segmentation as
a specialized segmentation problem attracts more and more at-
tention, since it favors many mobile applications which require
background editing (e.g., blurring, replacement, etc.) on por-
trait images, as shown in Fig. 1.

Semantic segmentation can be formulated as a dense pre-
diction task. The goal is to predict for every pixel which
object class it belongs to. In recent years, semantic seg-
mentation methods based on deep convolutional neural net-
works [1, 2, 3, 4, 5, 6] have made significant progresses.
However, compared with general cases, portrait images exhibit
unique characteristics: 1) it usually contains at least one per-
son whose face area covers at least 10% of the whole portrait
image [7, 8]; 2) it often has ambiguous boundaries and com-
plex illumination conditions. In mobile applications, predicting

precise segmentation boundaries while adapting to varying illu-
minations are crucial for user experience. Achieving high accu-
racy and efficiency at the same time is also challenging. Previ-
ous portrait segmentation works [7, 8] mainly focus on improv-
ing accuracy but not efficiency, thus are not suitable for real-
time segmentation on mobile device due to the involvement of
sophisticated network architecture. In this paper, we propose a
novel semantic segmentation network called PortraitNet, which
is specifically designed for real-time portrait segmentation on
mobile device with limited computational power. In terms of
network architecture, according to the characteristics of portrait
images, we configure PortraitNet with 32× down-sampling rate
in the encoder module to achieve large receptive field and high
inferring efficiency. We also employ U-shape [3] architecture to
up-sample the feature maps for better segmentation result. The
decoder module consists of refined residual blocks [9] and up-
sampling blocks. We modify the residual blocks by replacing
the normal convolution blocks by depthwise separable convo-
lution. In terms of network training, as predicting precise seg-
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Fig. 1. Portrait segmentation applications on mobile device. (a) Original image. (b) The corresponding segmentation. (c-d) Two important applications
based on portrait image segmentation.

mentation boundaries is difficult for convolutional neural net-
works, we design an auxiliary boundary loss to help the net-
work generate better portrait boundaries. Meanwhile, we take
into account complex illumination conditions in portrait images
and utilize the consistency constraint loss to improve the ro-
bustness. With the two auxiliary losses, we achieve the accu-
racy of 96.62% on EG1800 dataset and 93.43% on Supervise-
Portrait dataset at 30 FPS on iPhone 7 with input image size of
224 × 224.

2. Related Work

PortraitNet is related to research in semantic segmentation
and lightweight convolutional neural networks. This section re-
views typical semantic segmentation methods with deep convo-
lutional networks, and classical lightweight architectures.

Semantic image segmentation is a fundamental research
topic in computer vision. Many applications require highly
accurate and efficient segmentation results as a basis for ana-
lyzing and understanding images. With the recent advances of
deep learning, semantic segmentation methods based on deep
convolutional neural networks [10, 11, 12, 9] have made great
achievements, especially for improving segmentation precision.
Fully convolution networks [1] is the first essential work that
proposed an end-to-end network for pixel-wise segmentation. It
also defined a skip architecture to produce accurate masks. Seg-
Net [2] came up with a classical encoder-decoder architecture
for segmentation, while a similar method was UNet [3]. The
main difference is that SegNet [2] transferred pooling indices
from encoder to decoder to produce sparse feature maps, while
UNet [3] transferred high resolution features from encoder to
up-sampled features in decoder. A series of research works
named Deeplab [4, 5, 6] presented the most accurate methods
of semantic segmentation at present. Deeplabv1 [4] used di-
lated convolution to maintain the size of feature maps and use
CRFs to refine the segmentation result. Deeplabv2 [5] proposed
a module called atrous spatial pyramid pooling (ASPP) for im-
provement. Deeplabv3 [6] removed the CRFs module and mod-
ified ASPP module to improve the accuracy. Although these

semantic segmentation methods result in high precision, the ef-
ficiency is relatively low.

Compared with large models with high complexity, there are
some segmentation works that pay more attention to the effi-
ciency. ENet [13] proposed a new network architecture which
is deep and narrow, the speed is much faster while the accuracy
decline is obvious. ICNet [14] incorporated multi-resolution
branches to improve the accuracy of the model, but the model
is still too large to run on mobile device. BiSeNet [15] is the
state-of-art real-time segmentation method on the CitySpace
dataset [16]. However, this method is not suitable for small
size input images because of the crude up-sampling modules.

Automatic portrait segmentation as a specialized semantic
segmentation is important in mobile computing era. [7] col-
lected the first human portrait dataset named EG1800 and de-
signed a segmentation network to distinguish the portrait and
background. [8] designed a boundary-sensitive network to im-
prove the accuracy using soft boundary label. [17] proposed
a Border Network to improve the accuracy of segmentation.
However, the existing works focused on accuracy but not the
computational efficiency. With the growing demand of mo-
bile applications, a number of researches aiming at efficient
models for mobile device have been proposed [18, 19, 20, 21].
Depthwise separable convolutional layers are widely used in
lightweight networks. PortraitNet employs MobileNet-v2 [19]
as backbone to extract features in the encoder module and uses
depthwise separable convolution to substitute traditional convo-
lution in the decoder module to build a lightweight network.

Portrait images usually have complex illumination condi-
tions. Thus how to improve the robustness of the model under
varying lighting conditions is very important. [22] proposed
a stability training method to improve the robustness of deep
neural networks. Euclidean distance was used in this method
to evaluate the results. The stability training process could also
benefit segmentation networks. However, Euclidean distance
is not a good measurement when most pixels in the prediction
differs little from the ground truth. Inspired by model distilla-
tion [23], we employ soft label and KL divergence in consis-
tency constraint loss to assist training and improve robustness.
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Fig. 2. Overview of PortraitNet. (a) The architecture of PortraitNet. The green blocks represent the encoder module, numbers in brackets represent
the down-sampling rates. Each green block represents several convolutional layers. The yellow and purple blocks represent the decoder module. Each
up-sampling operation will up-sample the feature maps by 2×. (b) The architecture of D-Block in the decoder module.

3. Method

In this section, we elaborate our method in detail. We first
introduce the architecture of PortraitNet, which is specifically
designed for mobile device, and includes two modules, the en-
coder module and the decoder module. Then, we describe two
auxiliary losses used in PortraitNet to improve segmentation ac-
curacy without causing extra cost at the testing stage.

3.1. PortraitNet Architecture

Fig. 2 shows the architecture of PortraitNet. The encoder
module is used to extract features from the raw RGB image. In
contrast to general object segmentation, a portrait often occu-
pies a large area of the whole image. Achieving high accuracy
requires a good understanding of rich global and spatial infor-
mation. Furthermore, in order to achieve real-time performance
on mobile device, we use small input size of 224 × 224 with
32× down-sampling rate in the encoder module while utilizing
image global information. Meanwhile, we adopt the U-shape
architecture with 32× up-sampling rate in the decoder module
to reconstruct spatial information. We concatenate the feature
maps as fusion maps in the decoder module to fully exploit
the capabilities of the model. Inspired by lightweight research
works [18, 19, 20, 21], we use depthwise separable convolu-
tions instead of traditional convolutions to improve inferring
efficiency. Each convolutional layer is followed by a Batch-
Norm layer [24] and a ReLU layer. To reduce the complex-
ity of the model, the decoder architecture is relatively simple
compared to the encoder. It only contains two main operations,
namely up-sampling and transition. Up-sampling layers em-
ploy de-convolution to up-sample the feature maps. Each layer
up-samples the feature maps by 2×. We use modified residual
blocks [9] as transition modules in the decoder module. Fig.

2(b) shows the architecture of transition blocks. There are two
branches in the block. One branch contains two depthwise sepa-
rable convolutions. The other contains a single 1×1 convolution
to adjust the number of channels.

In PortraitNet, we utilize MobileNet-v2 [19] as backbone in
the encoder module. And we use massive depthwise convolu-
tions in PortraitNet to get a higher running speed, which makes
the model suitable for mobile device.

3.2. Auxiliary Losses

In order to improve the running speed of the model, Por-
traitNet uses depthwise separable convolution layers to extract
features and up-sample the feature maps subsequently. As a
lightweight segmentation model, the precision declines com-
pared with sophisticated models. Therefore, we propose to add
two effective auxiliary losses during the training process, which
helps to improve the performance without causing extra cost for
inferring results.

Boundary loss. Compared with general object segmenta-
tion, portrait segmentation is more sensitive to the segmenta-
tion boundaries. The network needs to generate sharper bound-
aries in favor of applications such as background replacement
or blurring. To utilize the useful information contained in se-
mantic boundaries, we propose to add a semantic boundary
loss in addition to the original semantic segmentation loss. We
slightly change the last layer in the decoder module by adding
a new convolution layer in parallel to generate boundary detec-
tion maps, as illustrated in Fig. 2(b). On the other hand, the
boundary convolutional layer will not be used for segmentation
inference. Different from [17], we only employ one convolu-
tional layer for boundary prediction instead of adding a bound-
ary branch. We use the boundary auxiliary loss to further learn
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the pivotal features of the portrait images, such that the learned
feature can be effectively used for inferring better segmentation.

We generate boundary ground truth from manual labeled
mask ground truth using traditional boundary detection algo-
rithm such as Canny[25]. In order to reduce the difficulty of
learning boundaries, we set the width as 4 for 224 × 224 in-
put images (see Fig. 3). Since more than 90% of pixels in the
boundary ground truth images are negative, the representation
of boundary is difficult to learn. We therefore use focal loss [26]
to guide the learning of boundary masks. The overall loss L is:

Lm = −

n∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi)) (1)

Le = −

n∑
i=1

((1 − pi)γyilog(pi) + pγi (1 − yi)log(1 − pi)) (2)

L = Lm + λ × Le (3)

In the above, Lm is the cross-entropy loss and Le is the focal
loss. λ is the weight of boundary loss. yi represents the ground
truth label of pixel i. pi represents the predicted probability of
pixel i. The predicted probability pi in Eq. 1 and Eq. 2 is
computed as:

pi(z j) =
ez j∑K

k=1 ezk
, (4)

where z is the original output of PortraitNet, and K is the num-
ber of groundtruth classes.

As only one convolutional layer is used to generate boundary
mask, the mask features and boundary features could make in-
valid competition in the feature representations. To avoid this,
small λ should be set. The boundary loss can improve the sen-
sitivity of the model to the portrait boundary, which in turn im-
proves the segmentation accuracy.

Consistency constraint loss. It is straightforward to use the
ground truth semantic segmentation as the supervision signal,
where the portrait pixels in the image are manually labeled as
1, otherwise 0. Such labels are usually called hard labels, be-
cause they only have binary categories. However, it has been
proved that soft labels with more information can further ben-
efit the model training. There are some research works focus-
ing on using soft labels to improve the accuracy of tiny models
through model distillation [23, 27]. For the input images, they
use a well-trained huge teacher model to generate soft labels,
and exploit the soft labels to supervise the training of tiny stu-
dent model. Model distillation requires a tedious training pro-
cess, and the amount of data may not be sufficient to train a huge
teacher model. Compared with complicated model distillation,
we propose a novel method to generate soft labels using the tiny
network itself with data augmentation. We also use consistency
constraint loss to assist the model training.

Commonly used data augmentation includes two main cate-
gories. One is deformation enhancement, such as random ro-
tate, flip, scale, crop, etc. The other is texture enhancement,
such as changing the brightness, contrast, sharpness of images,
adding random noise or Gaussian filtering, etc. For an origi-
nal image, we firstly use deformation enhancements to gener-
ate image A, and then apply texture enhancement on image A

Fig. 3. The ground truth boundary generated by Canny operator. (a) Orig-
inal image. (b) The corresponding segmentation. (c) The groundtruth
boundary.

to generate A’. Texture enhancement will not change the shape
of the images, so the segmentation of image A and A’ are the
same. Suppose the network output of image A is heatmap B and
the output of image A’ is heatmap B’, then heatmap B and B’
should be the same theoretically. However, due to the texture
augmentation methods, the quality of image A’ is worse than
A. As a result, the generated B’ is worse than B. Hence we use
the heatmap B with higher quality as the soft labels for heatmap
B’. Specifically, we add a consistency constraint loss between
heatmap B and B’, which is formulated as a KL divergence:

L′m = −

n∑
i=1

(yilog(pi) + (1 − yi)log(1 − pi))

−

n∑
i=1

(yilog(p′i) + (1 − yi)log(1 − p′i))

(5)

Lc =
1
n

n∑
i=1

qi × log
qi

q′i
× T 2 (6)

L = L′m + α × Lc (7)

Here α is used to balance the two losses. T is used to smooth
the outputs. pi and p′i in Eq. 5 are defined as follows:

pi(z j) =
ez j∑K

k=1 ezk
p′i(z

′
j) =

ez′j∑K
k=1 ez′k

(8)

And qi and q′i in Eq. 6 are defined similarly:

qi(z j) =
e

z j
T∑K

k=1 e
zk
T

q′i(z
′
j) =

e
z′j
T∑K

k=1 e
z′k
T

(9)

The consistency constraint loss could further improve the ac-
curacy of the model, and enhance its robustness under different
illumination conditions.
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Fig. 4. Illustration of consistency constraint loss.

4. Experiments

In this section, we first introduce the datasets and experimen-
tal setup, then evaluate the performance of PortraitNet and the
effectiveness of the two auxiliary losses.

4.1. Dataset

We train and test our method on two well-known portrait seg-
mentation datasets: EG1800 [7] and Supervise-Portrait.

EG1800 EG1800 contains 1800 portrait images collected
from Flickr, and each image is manually labeled at pixel level.
The images are mainly self-portrait captured by the front cam-
era of a mobile phone. The final images in EG1800 are scaled
and cropped automatically to 800×600 according to the bound-
ing box generated by the face detector running on each image.
The 1800 images are divided into two groups. One is the train-
ing dataset with 1500 images, while the other is the validat-
ing/testing dataset with 300 images. Since several image URL
links are invalid in the original EG1800 dataset, we finally use
1447 images for training and 289 images for validation. Some
sample portrait images are shown in Fig. 5.

Supervise-Portrait Supervise-Portrait is a portrait segmen-
tation dataset collected from the public human segmenta-
tion dataset Supervise.ly [28] using the same data process as
EG1800. Supervise.ly dataset contains high-quality annotated
person instances. The images are carefully labeled with per-
son segmentation masks. We further run a face detector on the
dataset and automatically crop the images according to the face
bounding boxes. We discard the images on which face detec-
tor failed and finally collect 2258 portrait images with different
sizes. We randomly select 1858 images as training dataset and
400 images as validating/testing dataset. We name the resul-
tant dataset as Supervise-Portrait. Compare with EG1800, por-

Fig. 5. Sample portrait images in EG1800.

Fig. 6. Sample portrait images in Supervise-Portriat.

trait images in Supervise-Portrait have more complicated back-
ground and severe occlusion. Some sample portrait images are
shown in Fig. 6.

4.2. Data Augmentation
To improve the generality of the trained model, we use sev-

eral data augmentation methods to supplement the original
training dataset, leading to better segmentation results. These
data augmentation methods can be divided into two categories:
one is deformation augmentation, the other is texture augmenta-
tion. Deformation augmentation augments the position or size
of the target, but will not affect the texture. On the other hand,
texture augmentation complements the texture information of
the target while keeping the position and size.

The deformation augmentation methods used in our experi-
ments include:

• random horizontal flip
• random rotation {−45◦ ∼ 45◦}
• random resizing {0.5 ∼ 1.5}
• random translation {−0.25 ∼ 0.25}
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Fig. 7. Data augmentations used in PortraitNet. (a) Original images. (b)
Result images after adding deformation augmentations on (a). (c) Result
images after adding texture augmentations on (b). (d) The groundtruth
segmentation corresponding to (b-c).

The texture augmentation methods used in our experiments
include:

• random noise {Gaussian noise, σ = 10 }
• image blur {kernel size is 3 and 5 randomly }
• random color change {0.4 ∼ 1.7}
• random brightness change {0.4 ∼ 1.7}
• random contrast change {0.6 ∼ 1.5}
• random sharpness change {0.8 ∼ 1.3}

Every operation in deformation augmentation and texture
augmentation added up with the probability of 0.5 during train-
ing. After data augmentation, we normalize the input images
before training using image mean ([103.94, 116.78, 123.68],
BGR order) and image val (0.017). The normalization equation
is (image − mean) × val. Fig. 7 shows the data augmentation
methods used in the experiments.

4.3. Experimental Setup
We implement our model using the Pytorch framework [29].

All competitive models are trained using a single NVIDIA
1080Ti graphics card. We use Adam algorithm with batchsize
64 and weight decay 5e-4 during training. The initial learning
rate is 0.001. We use (lr × 0.95

epoch
20 ) to adjust the learning rate

with 2000 epochs. In order to achieve higher running speed, we
train and test our model on 224 × 224 RGB images with three
channels.

4.4. Ablation Study
In this sub-section, we carefully evaluate the performance of

PortraitNet. First, we validate the effectiveness of two auxiliary
losses respectively. Next, we demonstrate the performance of
PortraitNet by comparing with the state-of-the-art methods.

4.4.1. Boundary loss
The boundary accuracy greatly influences the user experi-

ences in the applications of portrait segmentation such as back-
ground blurring or replacement. We add a new convolutional
layer paralleled with mask prediction layer to predict the por-
trait boundary. In order to verify the effectiveness of bound-
ary loss, we conduct two experiments with or without boundary
loss. More specifically, we train PortraitNet-M with only seg-
mentation loss, and train PortraitNet-B with both segmentation
loss and boundary loss. We empirically set λ = 0.1 to balance
segmentation loss and boundary loss. We do not use α in focal
loss and set γ = 2 in Eq. 2. We initialize PortraitNet-B with
well-trained PortraitNet-M. All hyper-parameters of the exper-
imental setup are same in different experiments.

The quantitative metric used to evaluate segmentation preci-
sion is the mean Interaction-over-Union(IOU) as follows:

mean IOU =
1
N
×

N∑
i=1

maskPDi ∩ maskGTi

maskPDi ∪ maskGTi
, (10)

where maskPDi and maskGTi represent segmentation result
and ground truth label of i-th image of test dataset, respectively.
The quantitative comparison is shown in Table 1. It can be seen
that the boundary loss improves the IOU accuracy by 0.22%
(from 96.32% to 96.54%) on EG1800 dataset, and by 0.41%
(from 92.63% to 93.04%) on Supervise-Portriat dataset.

We also propose a specific metric to better evaluate the model
performance on portrait boundary than mean IOU. The new
metric is similar to mean IOU with emphasized weight on
boundaries over inner pixels:

mean edge IOU =
1
N
×

N∑
i=1

w(x)i(maskPDi ∩ maskGTi)
w(x)i(maskPDi ∪ maskGTi)

,

(11)
where w(x)i represents the weight of pixel x in the i-th image.
More specifically, the weight w(x)i declines continuously from
boundaries to inside as in the follwing equation:

w(x)i =

e−
dis(x)2

2σ2 , x ∈ maskGT and y(x) = 1
0, x ∈ maskGT and y(x) = 0

(12)

where dis(x) represents the distance from pixel x to portrait
boundary, and σ indicates the decline rate. An illustration of
the new metric with different σ is shown in Fig. 8. Based on the
new metric, we compare the performance of the two networks
with different σ on EG1800 dataset, the results are shown in
Fig. 9 and Table 2. It can be seen that that the performance
enhancement is larger when σ is smaller, since the metric em-
phasize more on boundary pixels when σ is small. This demon-
strates the effectiveness of boundary loss in improving the pre-
cision of segmentation boundaries.

4.4.2. Consistency constraint loss
Due to the complication of lighting conditions when taking

selfies on smartphone, we use texture augmentation methods to
improve the robustness of PortraitNet. Meanwhile, we also find
that soft label could further improve the segmentation precision



7

Fig. 8. New metric for evaluating boundary precision. (a) Original images. (b) The corresponding segmentation. (c-e) The weight masks under the new
metric with different σ in Eq. 12.

Table 1. Accuracy comparison of PortraitNet with different losses.
Method EG1800 Supervise.ly
PortraitNet-M(ours, Exp.1) 96.32% 92.63%
PortraitNet-B(ours, Exp.2) 96.54% 93.04%
PortraitNet-C(ours, Exp.3) 96.57% 93.17%
PortraitNet(ours, Exp.4) 999666...666222%%% 999333...444333%%%

Fig. 9. The precision comparison in mean edge IOU metric between
Portrait-M and Portrait-B. Portrait-M trained model only with mask loss,
Portrait-M model trained with mask loss and boundary loss, parameter
λ = 0.1.

with the help of consistency constraint loss. We conduct a con-
trast test to verify its effectiveness. PortraitNet-M is the same
as discussed before, we train PortraitNet-C with both segmen-
tation loss and consistency constraint loss. We set α = 2 to
balance the two losses, and T is set to 1. The evaluation with
mean IOU on EG1800 dataset and Supervise-Portrait dataset is
reported in Table 1. Fig. 10 shows some segmentation results
generated by PortraitNet-M and PortraitNet-C, respectively.

To validate our proposed model, we perform data augmenta-

Table 2. Accuracy comparison of PortraitNet with new mean IOU metric
on EG1800 test dataset.

Sigma single model edge model increase
3 91.56% 92.34% +0.78%
5 93.80% 94.44% +0.64%
10 96.11% 96.55% +0.44%
20 97.57% 97.86% +0.29%
40 98.23% 98.44% +0.21%
80 98.43% 98.63% +0.20%

Table 3. Accuracy comparison of PortraitNet-M and PortraitNet-C with
new EG1800 test dataset using the mean IOU metric.

Method EG1800 Supervise.ly
PortraitNet-M(ours, Exp.1) 95.78% 91.51%
PortraitNet-C(ours, Exp.3) 96.24% 91.98%

Fig. 10. Results generated by PortraitNet-M and PortraitNet-C.

tion on the test dataset to capture illumination variations. We
evaluate the two networks with mean IOU metric on the new
test dataset as in Table 3. The model with consistency constraint
loss is more robust to illumination condition change.
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Fig. 11. Segmentation results of challenging portrait images generated by different methods. The first row shows images with strong illumination. The
second and fourth rows show images with background color close to foreground portrait. The third row shows the portrait image with helmet. The last
row shows the portrait from a side view.

4.4.3. Accuracy Analysis

PortraitNet is specifically designed for mobile device com-
pared with other real-time segmentation networks. We choose
PortraitFCN+ [7], ENet [13] and BiSeNet [15] as baselines,
since PortraitFCN+ [7] is one of the iconic methods for portrait
segmentation, ENet [13] and BiSeNet [15] are the state-of-the-
art. In our experiments, the backbone of BiSeNet is ResNet18.

For real-time inference on mobile device, we use MobileNet-
v2[19] as our backbone to extract features form original images,
and we use U-shape architecture to generate sharp segmenta-
tion boundaries. Depthwise separable convolutions are used
in PortraitNet to gain running speed. In encoder modules, the
down-sampling rate is 32×. We use large receptive field to uti-
lize global information to help deduce the segmentation mask,
which is necessary for portrait images. In decoder modules, we

use skip lines from encoder modules to reconstruct the spatial
information for better segmentation details. To employ segmen-
tation networks on mobile device, we set the input image size
of 224×224 for real-time inference. We train PortraitNet model
with mask loss and two auxiliary losses as the following:

L = L′m + α × Lc + β × Le, (13)

where L′m, Lc, Le are defined in Eq. 5, Eq. 6, Eq. 2 respectively,
and α = 2, β = 0.3, T = 1.

The performance on EG1800 and Supervise-Portrait datasets
is shown in Table 4. To further verify the performance of the
two auxiliary losses, we test a new model called BiSeNet+,
which is BiSeNet with our two auxiliary losses. The experi-
ments show that the two auxiliary losses also improve the result
of BiSeNet. Fig. 11 shows several difficult portrait segmenta-
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Table 4. Accuracy comparison with the state-of–the-art real-time segmen-
tation methods using the mean IOU metric. The numbers in brackets rep-
resent the image size for inference. Horizontal flip or image resizing are
not used in testing.

Method EG1800 Supervise.ly
PortraitFCN+(800 × 600) 95.91% 92.78%
ENet(224 × 224) 96.00% 92.38%
BiSeNet(448 × 448) 95.79% 92.56%
BiSeNet(224 × 224) 95.25% 91.25%
BiSeNet+(224 × 224) 95.55% 91.76%
PortraitNet(ours, 224 × 224) 999666...666222%%% 999333...444333%%%

Table 5. Quantitative performance comparison. FLOPs are estimated with
the size in brackets.

Method FLOPS Parameters
PortraitFCN+ (6 × 224 × 224) 62.89G 134.27M
ENet (3 × 224 × 224) 0.44G 0.36M
BiSeNet (3 × 448 × 448) 9.52G 12.4M
BiSeNet (3 × 224 × 224) 2.38G 12.4M
PortraitNet(ours, 3 × 224 × 224) 0.51G 2.1M

Table 6. Speed comparison with the state-of-the-art real-time segmentation
models on NVIDIA 1080Ti graphic card.

Method NVIDIA 1080Ti
PortraitFCN+ (6 × 224 × 224) 19.04ms
ENet (3 × 224 × 224) 12.53ms
BiSeNet (3 × 448 × 448) 5.15ms
BiSeNet (3 × 224 × 224) 3.11ms
PortraitNet(ours, 3 × 224 × 224) 4.92ms

tion results generated by different methods.

4.4.4. Speed Analysis
Inference efficiency is crucial for portrait segmentation on

mobile device. We evaluate the FLOPs (float point opera-
tions) and the scale of parameters on different models (see
Table 5). We also test the actual running speed on NVIDIA
1080Ti graphic card compared with other methods (see Ta-
ble 6). For fair comparison, we use bilinear interpolation based
up-sampling instead of de-convolution in PortraitNet. We find
that PortraitNet achieves a good balance between accuracy and
efficiency. Moreover, we adapt PortraitNet from Pytorch [29] to
Coreml [30] and test the inferring time on IOS. For image size
of 224 × 224, the cost of PortraitNet processing one image is
around 32ms, while other real-time segmentation methods can-
not directly run on iPhone without modification.

5. Conclusion

In this paper, we present PortraitNet, a specifically designed
lightweight model for segmenting portrait images on mobile de-
vice. We propose to add two auxiliary losses to assist training
without additional cost for segmentation inference. The bound-
ary loss helps to generate sharper boundaries, and the consistent
constraint loss improves the robustness with respect to lighting

variations. The experimental results demonstrate both high ac-
curacy and efficiency of our approach, verifying that PortraitNet
could serve as a lightweight tool for real-time portrait segmen-
tation on mobile device.
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