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Figure 1. Given portrait images with their faces partially occluded by hair (a), our method is able to generate portraits without hair while
preserving facial identity (b). After removing the effects of hair, the resulting portrait images can be well employed in hair design by
simply blending the clean face with some hairstyle templates (c and d) without the interference from existing hair. Our results can also
benefit 3D face reconstruction [12] by using the clean face textures (e, f) generated by our method (rows 2 and 4) in contrast to the results
of the original images (rows 1 and 3).

Abstract

Removing hair from portrait images is challenging due
to the complex occlusions between hair and face, as well
as the lack of paired portrait data with/without hair. To
this end, we present a dataset and a baseline method for
removing hair from portrait images using generative adver-
sarial networks (GANs). Our core idea is to train a fully
connected network HairMapper to find the direction of
hair removal in the latent space of StyleGAN for the train-
ing stage. We develop a new separation boundary and dif-
fuse method to generate paired training data for males, and
a novel “female-male-bald” pipeline for paired data of fe-
males. Experiments show that our method can naturally
deal with portrait images with variations on gender, age,
etc. We validate the superior performance of our method
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by comparing it to state-of-the-art methods through exten-
sive experiments and user studies. We also demonstrate its
applications in hair design and 3D face reconstruction.

1. Introduction

Hair is not only an important component of the human
body, but also a key element of personality and fashion.
However, the presence of hair in a portrait image poses sig-
nificant challenges for digital hair design and 3D face re-
construction. Regarding hair design, a direct overlay of the
new hair can easily cause problems due to mixing up with
the old hair, while replacing the old hair with the new hair
requires error-prone matting and inpainting techniques [38].
For 3D face reconstruction, most existing methods cannot
handle the hair in front of the face and it remains in the
texture [10, 23], resulting in noticeable artifacts of the re-



constructed face (see Fig. 1f). This motivates us to develop
a hair manipulation method that can naturally remove hair
from portraits to facilitate such real applications.

Although image inpainting methods [24,25,39] can help
to generate or edit facial structure, they only allow manip-
ulating face semantic attributes at the image level. Thanks
to the development of StyleGAN [19], the exploration in its
latent space [3, 29, 31, 36, 37] enables editing facial seman-
tics at the manifold level. However, none of these meth-
ods is able to remove hair while preserving facial identity
due to the following main challenges. First, a dataset of
paired portraits with/without hair is not available. More-
over, it is not easy to prepare such a dataset, especially for
females. Second, besides the lack of ground truth of “bald
woman”, synthetic portrait generation based on StyleGAN
is infeasible as “bald woman” is an invalid semantic combi-
nation. Third, hair removal is not a simple inpainting task,
since the newly generated contents for the original hair re-
gion should be compatible with the original face in terms of
skin color, shadow effect, etc. However, extreme light con-
ditions, shadows, and different hairstyles can easily cause
imperfections given the variety of faces.

To address the above challenges, we present a novel
method that can effectively remove hair from portraits while
preserving original face semantics and portrait quality, even
for female portraits with long and complex hair. In the
StyleGAN latent space, hair removal is not a simple linear
mapping problem. To find a specific hair manipulation path
and avoid expensive data annotation, we design two differ-
ent pipelines to generate paired latent codes with/without
hair for males and females while keeping their facial iden-
tities. The paired data with/without hair are used to train
a fully connected network HairMapper to manipulate the
latent code of a real portrait for hair removal during testing.
The final result is obtained by exploiting Poisson editing to
blend the mapped portrait with the original portrait. The
experiments demonstrate that our method results in high-
quality portraits of different ages and gender groups. The
user studies further show that our work can generate satis-
factory outputs that accord with human preferences.

The major contributions of our paper are: 1) We intro-
duce an automatic method to remove hair from real portrait
images. It can generate a new portrait without hair while
preserving facial identity. 2) We develop a novel “female-
male-bald” pipeline to generate bald female data that does
not exist in the StyleGAN latent space, and use a fully con-
nected network to find the hair removal path in the latent
space. 3) We create the first dataset that contains 6,000
high-quality portrait images with hair removed.

2. Related Work
Portrait Image Synthesis Thanks to the seminal work
of generative adversarial networks [13], researchers have

been exploring different generative models for portrait gen-
eration and editing. Progressively growing generator and
discriminator [17] can achieve high-resolution portrait im-
ages. Freeform user input like freehand sketches [8, 9] and
masks [14, 22] can also be used as conditions to generate
realistic portraits. StyleGAN [18–20] has a disentangled
latent space and can generate high-quality portraits by ma-
nipulating different semantics. By projecting images into
the latent space of StyleGAN [1, 2, 30, 35], the input im-
age’s semantic information can be embedded into a latent
code, thus the face editing task is transformed into simple
latent code manipulation.

StyleGAN Latent Space Finding the general rule of la-
tent code manipulation under the StyleGAN framework is
an effective way for portrait editing. It can be regarded as
seeking a specific path in the StyleGAN latent space. Es-
tablishing a separation boundary in the latent space [31] al-
lows editing face semantics through a simple linear combi-
nation. However, the separation boundary may significantly
change facial identity. To address this problem, Coarse-to-
Fine [36] further proposes a pipeline to refine the separa-
tion boundary, thus better preserving facial identity. The
paths can also be learned by Principal Component Analysis
or self-supervised approaches without annotation [15, 16].
Instead of working in the StyleGAN latent space, the la-
tent semantic path can be discovered by directly decom-
posing the pre-trained weights [32], or in a new space of
channel-wise better-disentangled style parameters [37]. By
adding or subtracting the standard deviation of a specific
style channel, facial attributes like the amount of hair or
hair greyness can be effectively controlled. StyleClip [29]
further uses the Contrastive Language-Image Pre-training
model to achieve text-based semantic image manipulations
by dynamically finding the direction of a given text prompt
in latent space. Besides local semantic attributes, the non-
linear path in the latent space for a continuous global ag-
ing process can be achieved by a regression task [4]. An-
other solution of attribute-conditioned sampling and editing
is continuous normalizing flows in the latent space [3].

Hair Manipulation Hair manipulation provides an ef-
fective way for users to design and visualize different
hairstyles. Layers that are extracted from human faces can
be applied to beard removal [27]. 3D models offer more ge-
ometric information for hair generation and manipulation.
Based on the modeling results, hair editing can be achieved
by smoothly changing each strand [5, 6]. To circumvent
the expensive 3D modeling and rendering progress, neural
networks are exploited to directly synthesize realistic hair
for 2D images. Simple and sparse guided strokes can pro-
vide high-level hair structure information for target hairstyle
generation [7, 28, 38]. Painted masks or reference photos



give users more degrees of freedom for interactive hair ma-
nipulation [33, 34, 40]. Although the above methods have
good performance in generating high-quality portraits with
different hairstyles, the facial identity can be affected when
synthesizing the new portrait as a whole from the input. On
the other hand, if a new hairstyle is composed onto the input
portrait directly, artifacts can easily arise such as redundant
hair, hair-face inconsistency, etc.

3. Method

3.1. Overview

Fig. 2 illustrates the pipeline of our method. Given a real
portrait image of either male or female with any hairstyle,
our goal is to find a specific path in the StyleGAN latent
space that can completely remove hair while preserving por-
trait structure and facial identity. The basic idea is to first
generate paired latent codes of portraits with/without hair,
then train a HairMapper which can generalize well for
plausible hair removal. The key challenge is how to gener-
ate high-quality paired data (latent codes) for training, es-
pecially for females. To this end, we design two pipelines
for males and females as summarized below.

To manipulate hair and gender for paired data gener-
ation, we first randomly sample two latent code datasets
and get their hair scores through a hair classifier (Subsec-
tion 3.2). Then, we leverage the datasets and hair scores
to train a male hair separation boundary. We also use the
gender transition results of StyleFlow to train a gender sep-
aration boundary (Subsection 3.3). For male portrait with
hair, inspired by [36], we manipulate hair based on the
male hair separation boundary to generate a new portrait
without hair, then diffuse the new portrait with the origi-
nal portrait to obtain quality paired latent codes (Subsection
3.4). The paired male latent codes are used to train a male
HairMapper (Subsection 3.5) to find the latent path of
hair removal for males. For females, since StyleGAN [19]
prevents the sampling of invalid combinations (e.g., bald-
females, long-haired males), it is impossible to generate
bald female data with a single linear transformation. There-
fore, we introduce a novel “female-male-bald” pipeline to
solve this problem. We first leverage the aforementioned
gender separation boundary to edit the latent code, and get
the male portrait that has the same face postures and skin
characteristics as the original female portrait. After that, we
feed the latent code of the male portrait to the pre-trained
male HairMapper and achieve a bald male portrait, and
then diffuse it with the original female portrait, resulting
in paired female latent codes (Subsection 3.6). Finally, we
train the final HairMapper on paired data of both males
and females. For a real input portrait image (male or fe-
male), we first embed it into the latent space using the e4e
StyleGAN encoder [35], then we feed the latent code to the

description

D0 codes in each layer are same and limited to W
Dnoise same with D0, but add noise
e4e codes in each layer close to the distribution of W

Table 1. Comparison between latent codes from D0, Dnoise and
latent codes generated by e4e encoder.

final HairMapper. After that, we utilize image blending
to achieve the final result (Subsection 3.7).

3.2. Data Preparation

The e4e encoder [35] can map a real image into its la-
tent code w+, while balancing the distortion-editability and
distortion-perception trade-offs. w+ consists of a series of
latent vectors w with low variance, each close to the distri-
bution of the W latent space of StyleGAN. We employ e4e
to encode real images. In order to apply our method to la-
tent codes of real images, we sample two w+ latent code set
D0 and Dnoise (see details in Tab. 1) that are close to the
distribution of e4e encoder results.

D0. For each latent code w+
i ∈ D0, we sample a latent

code wi ∈ W , and set codes in each layer of w+
i as wi:

D0 = {w+
i |ni=0}, w+

i = [wi, · · · , wi], (1)

where [· · · ] denotes the stack of layers.
Dnoise. For each latent code w+

i ∈ Dnoise, we sample a
latent code wi ∈ W , and set codes in each layers of w+

i as
wi, then add noise to each layer:

Dnoise = {w+
i |ni=0}, w+

i = [wi + ni0, · · · , wi + ni17],
(2)

where ni0, · · · , ni17 denote noises that are added to each
layer (see details of noise sample in Section 4).

To get the hair score of each portrait, we propose to
train a hair classifier and leverage the CelebAHQ-mask [22]
which includes attribute Bald as the training dataset. Since
CelebAHQ-mask only contains 602 bald images, we add
184 bald images collected from the Internet to the dataset.
Then we leverage ResNet50 to train a hair classifier Chair.
We input the latent codes in D0 and Dnoise to StyleGAN,
then feed the output images into Chair, the bald portrait’s
latent code will be scored as shair = 0 by Chair, other por-
trait’s latent code will be scored as shair = 1.

3.3. Separation Boundary Training

In this section, we train two separation boundaries in the
latent space of StyleGAN, which provide general directions
for male hair removal and gender transformation.

We use the separation boundary training algorithm in In-
terFaceGAN [31] to train a male hair separation boundary.
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Figure 2. The pipeline of our HairMapper. We use the same color to mark the latent code and its corresponding portrait generated by
StyleGAN. In the training stage, for males (top row), given a male latent code w+

m with hair, we first edit it by leveraging the normal vector
nh of the male hair separation boundary to achieve ẇ+

m and its corresponding bald portrait. To better preserve facial identity, we further
leverage ẇ+

m to initialize the optimization of w̌+
m to obtain w̌+∗

m by diffusing the bald portrait with the original portrait. We construct dataset
Hm by composing pairs of male latent codes w̌+∗

m and w+
m, and train a HairMapper Mm for males. For females (middle row), we first

edit the input latent code w+
f by leveraging the normal vector ng of the gender separation boundary to get a male portrait with latent code

w+
f→m. Then we directly use the pre-trained Mm to edit w+

f→m to get ẅ+
f→m and its corresponding male portrait without hair. After that,

we perform the same diffusion process to obtain w̌+∗
f as the paired latent code of w+

f . We construct our complete dataset H with paired
latent codes of both males and females, and train the final HairMapper M . In the testing stage (bottom row), we first encode an input
real image by e4e encoder, then feed its latent code into M to remove hair. After blending with the input image, we achieve our final result.

We use D0 as the training set, an SVM is trained on the
male latent codes and their corresponding hair scores (hair-
1 and bald-0), then obtain the male hair separation bound-
ary’s normal vector nh.

We use StyleFlow [3] to edit the Gender attribute for
1,000 latent codes, resulting in 1,000 pairs of male-female
latent codes. Then an SVM is trained on the latent code
pairs and their corresponding scores (male-1 and female-
0) to obtain the gender separation boundary’s normal vec-
tor ng . This gender separation boundary has better perfor-
mance in preserving skin characteristics and face posture
than that which we simply train on unpaired latent codes
and gender scores (see comparisons in Section 5).

3.4. Male Hair Removal

In the following, we describe the pipeline to generate
paired latent codes with/without hair for males. As the bald
man data is valid in latent space, we directly use hair sepa-
ration boundary to edit the original latent code of the male
portrait and get the baldness information as:

ẇ+
m = w+

m + αhair × nh, (3)

where αhair is a hyper-parameter that controls the distance
that w+

m moves along nh, w+
m denotes the original latent

code, and ẇ+
m denotes the edited latent code.

The image generated from ẇ+
m is a male portrait without

hair but its facial identity is changed (see Fig. 3). In order to
get the latent code whose hair is removed while preserving
facial identity, inspired by Coarse-to-Fine [36], we utilize
a method to diffuse the baldness semantic information with
the original portrait. We first compose the original portrait
and the bald male portrait to obtain a synthetic image:

X̌m = G(w+
m)⊙ (1−mh) +G(ẇ+

m)⊙mh,

mh = FaceParsing(G(w+
m)),

(4)

where ⊙ is the element-level multiplication, G is the
StyleGAN generator, G(w+

m) denotes the original portrait,
G(ẇ+

m) denotes the bald male portrait. mh denotes the hair
mask, FaceParsing is a network that can extract the face
mask excluding hair (see details in Section 4).

The synthetic image is used as the prior information to

Figure 3. From left to right: original image G(w+
m), edited image

G(ẇ+
m), synthetic image X̌m, and diffusion result G(w̌+∗

m ).



achieve a bald portrait that preserves the facial identity of
G(w+

m). We diffuse G(w+
m) with G(ẇ+

m) by optimizing
a latent code (denoted as w̌+

m) to obtain latent code w̌+∗
m

whose corresponding portrait has the same face identity as
G(w+

m) and has the same baldness information as G(ẇ+
m).

In the optimization, Coarse-to-Fine [36] uses the origi-
nal latent code (w+

m in our case) to initialize the latent code
w̌+

m that needs to be optimized. But we find that directly
eliminating hair by optimization is difficult due to the com-
plexity of the hair structure (see details in Section 5). For-
tunately, face semantics can be easily manipulated by opti-
mization. Thus we leverage ẇ+

m to initialize w̌+
m, then the

optimization mainly focuses on transforming the face re-
gion of G(ẇ+

m) to that of G(w+
m), which is much easier

than transforming from hair to skin. The optimization and
its loss Ldiffuse are defined as:

w̌+∗
m = argmin

w̌+
m

Ldiffuse,

Ldiffuse = λrecLrec + λperLper,

Lrec = ∥X̌m ⊙ (1−mh)−G(w̌+
m)⊙ (1−mh)∥2,

Lper = ∥ϕ(X̌m)− ϕ(G(w̌+
m)))∥2,

(5)

where λrec and λper are the weights to control face recon-
struction loss Lrec and overall perceptual loss Lper, ϕ de-
notes the VGG16 model, and Lper is the L2 distance be-
tween activation maps of ϕ.

3.5. Male HairMapper Training

We use the procedure described in Subsection 3.4 to pro-
cess 10,774 male latent codes in D0 and 5,328 male latent
codes in Dnoise, yielding the male latent code dataset Hm:

Hm = {(w+
mi, w̌

+∗
mi) |

nm
i=0}, (6)

where nm = 16, 102 is the size of Hm.
We do not use Hm to train a “fine separation boundary”

as in [36] for hair removal, since the hair structure is com-
plicated and cannot be removed by a single linear combina-
tion of latent code and separation boundary (see details in
supplementary material). Inspired by the Latent Mapper of
StyleClip [29], we propose to use a fully connected network
to find a specific path:

ẅ+
m = w+

m + β ×Mm(w+
m), (7)

where Mm is the fully connected network, and β is the
hyper-parameter.

The objective function to train Mm is :

L = λlLlatent + λhLhair + λfLface + λiLid, (8)

where Llatent penalizes the difference between ẅ+
m and

w̌+∗
m :

Llatent = ∥ẅ+
m − w̌+∗

m ∥2, (9)

Lhair penalizes the difference of the hair region between
the two images generated from ẅ+

m and w̌+∗
m :

Lhair = ∥G(ẅ+
m)⊙mh −G(w̌+∗

m )⊙mh∥2, (10)

and Lface penalizes the difference of the face region be-
tween the image generated from ẅ+

m and the original image
w+

m:

Lface = ∥G(ẅ+
m)⊙(1−mh)−G(w+

m)⊙(1−mh)∥2. (11)

We also employ the identity loss [30] to penalize the dif-
ference of the identity between the image generated from
ẅ+

m and the original image:

Lid = 1− ⟨R(G(ẅ+
m)), R(G(w+

m))⟩, (12)

where R is the ArcFace network [11], and ⟨·, ·⟩ computes
the cosine similarity.

3.6. Female Hair Removal

StyleGAN [19] prevents the sampling of invalid com-
binations, such as bald-female. Also, simply using male
hair separation boundary cannot completely remove hair
and significantly changes facial identity (see detailed ex-
planation in supplementary material). Hence we propose
a female-male-bald pipeline to process female portraits as
shown in Fig. 4. Our approach is to generate a bald-man
portrait first, and diffuse it with the original female portrait.

First, we leverage the gender separation boundary to edit
the latent code w+

f of the original female portrait. The
edited latent code w+

f→m can generate a male portrait which
has similar skin characteristics and face posture with w+

f :

w+
f→m = w+

f + αgender × ng. (13)

Second, we feed w+
f→m to the pre-trained male

HairMapper Mm to get a bald male latent code ẅ+
f→m:

ẅ+
f→m = w+

f→m + β ×Mm(w+
f→m). (14)

W+ latent space

coarse 
gender boundary

male hair
mapper

semantic 
diffusion

Figure 4. Example female-male-bald pipeline. The orange box
highlights the original female image (G(w+

f )), the pink box high-
lights the male image (G(w+

f→m)) edited by ng , the blue box
shows the bald male image (G(ẅ+

f→m)) edited by Mm, and the
purple box highlights the diffusion bald female result (G(w̌+∗

f )).



We then use the hair mask to obtain a synthetic image
X̌f as the prior information as we did for male portraits:

X̌f = G(w+
f )⊙ (1−mh) +G(ẅ+

f→m)⊙mh. (15)

Finally, we apply the diffusion method described in Sub-
section 3.4 to generate the result w̌+∗

f , and we also use
ẅ+

f→m to initialize the optimization.
After processing 8,034 latent codes in D0 and 5,878 la-

tent codes in Dnoise, we build a dataset H including female
latent code pairs and those male latent code pairs in Hm:

H = {(w+
mi, w̌

+∗
mi) |

nm
i=0}

⋃
{(w+

fi, w̌
+∗
fi ) |

nf

i=0}, (16)

where nm = 16, 102 and nf = 13, 912. We train the final
HairMapper M on H by following the same procedure in
Subsection 3.5.

3.7. Image Blending

For real image editing, we first use the e4e encoder to
encode the real image and get its latent code. Then we feed
the latent code to M and obtain the resulting latent code and
its corresponding image. Finally, we apply Poisson editing
to blend the resulting image with the original face.

However, the hair mask cannot cover the shadow under
the hair, and the Poisson editing forces the color to be con-
sistent on the edge of the hair mask and maintain the gradi-
ent of the synthetic image (keep the light difference between
shadow and skin unchanged). As a result, the resulting im-
age cannot perfectly integrate with the original face as the
face region is wrongly “lightened” (see the top row in Fig.
5). To resolve this, we propose to dilate and blur the hair
mask, which can effectively cover the shadow (see the bot-
tom row in Fig. 5) and achieve a smooth transition.

Figure 5. Image blending using the original hair mask (top) vs. the
dilated and blurred hair mask (bottom). Image from left to right:
hair mask visualization, synthetic image, and blended image.

4. Implementation Details
Experimental Environment: We use StyleGAN2-ada

[18] PyTorch model in our experiments. The experimental
platform is a desktop PC with i7-9700 3.0GHz CPU, 16 GB
memory, and GeForce RTX 2060 GPU of 13.9 GB mem-
ory, all images in the training and testing stage are at 10242

resolution. Data Generation: We set truncation-psi as 0.8
for latent code samples. For sampling noises of Dnoise,
we first compute the standard deviation wstd and the noise
scale scalenoise = (0.5wstd)

2, then we use the noise scale
to control the weight of randomly sampled noise and get the
latent code noise in Equ. 2. Diffusion: We use the Adam
solver [21] as the optimizer with a learning rate of 0.01,
and train each latent code for 150 iterations. HairMapper:
We use 8 fully connected layers to build Mm and M . For
each mapper, we use the Adam solver with a learning rate
of 0.005 to train Mm for 52,000 steps and M for 26,000
steps. Style Preserving: The first 8 layers of the latent code
control the coarse feature of the face (posture, shape), keep-
ing the rest of the layers unchanged can preserve fine fea-
tures (skin appearance). Thus, we only edit the first 8 layers
of the latent codes (using mapper or separation boundary).
HairMask: We use the FaceParsing network * proposed
by MaskGAN [22] to generate hair mask for each portrait.
For blending, we set dilate kernel size as 50 and blur kernel
size as 30 for mask dilating and blurring. Hyper param-
eter: For diffusion, we set λrec = 1.0 and λper = 5e−5.
For mapper, we set β = 0.4 in the training stage, and set
β = 0.4× 1.2 = 0.48 in the testing stage. In Equ. 8, we set
λl = 0.1, λh = 0.4, λf = 0.4, and λi = 0.4. For separation
boundary, we propose to use two algorithms to compute the
hyper-parameter α (see details in supplementary material).

5. Evaluation
5.1. Results

Hair Removal. We test our method on various images
collected from the Internet † (with the permission of non-
commercial purposed download) across different ages, eth-
nicity, gender groups, and lighting conditions. Our method
takes 0.7181 seconds to process a real image. Fig. 1 shows
two typical examples with plausible hair removal. We also
construct experiments on “pseudo ground-truth”. We manu-
ally add hair to some bald portrait images collected from the
internet, then apply our method to the hair-added portraits.
More results can be found in the supplementary material.

Dataset. We also apply our method on FFHQ images
[19] (CC BY-NC-SA 4.0) and present a non-hair-FFHQ
dataset that contains 6,000 non-hair portraits ‡ (see samples
in Fig. 6) to inspire and facilitate more works in the future.

*https://github.com/switchablenorms/CelebAMask-HQ
†https://unsplash.com/
‡https://github.com/oneThousand1000/non-hair-FFHQ



Figure 6. Samples from the non-hair-FFHQ dataset.

Figure 7. From left to right: The original image, the image edited
by ng , and the image edited by nc

g .

Application. Fig. 1 demonstrates two applications of
our method: digital hair design and single-view face recon-
struction. First, hair design can be made easy by successful
hair removal, as new hair templates can be directly added
to our resulting image. Here we simply perform Poisson
editing to blend hair templates with the image with no hair.
Also, for face reconstruction, our hair removal results can
provide clean texture for methods that suffer from hair at
the forehead [10, 23]. As shown in Fig. 1, we apply GAN-
FIT [12] to portraits after hair removal, resulting in a well-
reconstructed face with little geometry change (compared
with results from the original portraits) and no hair artifacts.

5.2. Ablation Study

Gender Transformation. In Subsection 3.3, we propose
to use the results of Styleflow to train the gender separation
boundary and get ng , since it has better performance than
nc
g of coarse gender separation that trained on randomly

sampled latent codes and gender scores. We show in Fig. 7
that nc

g causes much bigger change of face shape and pose
compared with ng .

Optimization Initialization. In Subsection 3.4, we ini-
tialize the latent code using ẇ+

m instead of w+
m for optimiz-

ing hair removal. The benefit is shown in Fig. 8. There
exist artifacts (the hair is not fully removed but still visible)
if initialized by w+

m. We attribute it to the big difference
between hair structure and its surroundings including skin
and background, which cannot be effectively minimized by
optimization. Due to the preferable linearity of faces in the
latent space, using ẇ+

m for initialization only requires the
change of the face region and achieves much better results.

5.3. Comparisons

We compare our method with other image manipulation
works based on path finding in the StyleGAN latent space,
including InterFaceGAN [31], StyleSpace [37], StyleClip
[29], and StyleFlow [3].

Figure 8. From left to right: the original image, and the results by
initializing the optimized code using w+

m and ẇ+
m, respectively.

ours IFG SS SC SF
Lid 0.3451 0.5933 0.3382 0.3986 0.4257

Table 2. Average identity loss (Lid) of InterFaceGAN (IFG),
StyleSpace (SS), StyleClip (SC), StyleFlow (SF), and ours.

As shown in Fig. 9, we sample input latent codes and
get the original images (column 1). For InterFaceGAN, we
train a separation boundary on D0 and hair scores, then use
the separation boundary to edit the input latent code. For
StyleSpace, we map the input latent code to StyleSpace, get
s, then add standard deviation to s at channel 364 of layer
6, which is claimed for hair control. For StyleClip, we find
the global direction from “face with hair” to “face without
hair”, then move s along this direction. For StyleFlow, we
edit the attribute “baldness” for input latent codes.

To compare the ability to preserve face identity, we ran-
domly sampled 500 latent codes, then edit them using the
above four methods and also ours. For our method, we do
not perform blending (column 6 in Fig. 9) to blend the origi-
nal face region to the resulting image, as our goal is to make
fair comparisons on path-finding performances only. For
quantitative measurement, we leverage ArcFace to compute
the facial identity difference (Lid) between the original face
and the edited face (see Tab. 2). StyleSpace is a SOTA
method to locally manipulate semantic attributes while pre-
serving facial identity. Our method has quite a similar per-
formance, indicating that the path identified by our method
has little influence on the face.

Moreover, Fig. 9 shows that only our method achieves
plausible hair removal. It can completely remove hair from
male and female portraits while keeping facial identity un-
changed. In contrast, InterFaceGAN changes facial identity.
StyleSpace only removes hair on the forehead and has obvi-
ous artifacts. StyleClip can remove most of the hair, but still
causes artifacts in the case of “long hair female”. StyleFlow
always leads to a smaller head and changes facial identity.

We also show comparisons with 3D head reconstruction
work [26] in the supplementary material.

5.4. User Study

We conducted two user studies to evaluate the effective-
ness of our method. We evaluate (1) the authenticity of our
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Figure 9. Qualitative comparison results for state-of-the-art methods. From left to right: the original image, InterfaceGAN, StyleSpace,
StyleClip, StyleFlow, ours w/o blending, and ours w/ blending.

resulting image w.r.t. the real bald image, and (2) user pref-
erences on our results over SOTA results.

For the first user study, we collected 40 real bald portrait
images, and 40 randomly sampled results with hair removed
from real portrait images. We randomly chose 20 images
from the above, and asked the participant to judge whether
each image is untouched or not. Results over 40 participants
show that 48.37% of our results were labeled as untouched,
while 59.74% of the real bald images were labeled as un-
touched. This indicates that our results are close to real bald
data in terms of quality.

For the second user study, we applied the five methods
(including ours) for comparison in Subsection 5.3 to 50 la-
tent codes and obtained 50 groups of images. We randomly
chose 20 image groups with unordered images for 35 par-
ticipants to choose the best one from each group. Statisti-
cal results show that 66.86% of the participants chose our
method as the best, while 8.43%, 6.14%, 9.86%, and 8.71%
of the participants chose InterFaceGAN, StyleSpace, Style-
Clip, and StyleFlow, respectively. This indicates that our
method is clearly better than others for hair removal.

6. Conclusion and Discussion

In this paper, we present a new method that can remove
hair from portraits naturally while preserving facial identity
and portrait quality. Our key idea is to train a fully con-
nected network HairMapper that can identify a path in
the latent space of StyleGAN for plausible hair removal.
To enable training, we first construct paired latent codes
with/without hair for males and females respectively. In
particular, we develop a novel “female-male-bald” method
for creating paired data of females. During testing, we feed
the input portrait to the mapper, then blend the output im-
age that has no hair with the input. Our method can ro-
bustly deal with portrait images with variations on gender,
age, race, hairstyle, expression, pose, occlusion, shadow,
and lighting. The high-quality resulting portraits without

hair can preserve facial identity, benefiting real applications
such as digital hair design and single-view face reconstruc-
tion. We consider our work as an interesting step towards
hair manipulation in the latent space. In addition, our high-
quality portrait image dataset with hair removed can inspire
more potential applications in the future.

Our method has limitations. First, our method relies
on the e4e encoder to embed real images. Some portraits
that cannot be precisely encoded by e4e may cause arti-
facts, such as having the overall color, the face or ear shape
changed (see rows 1-3 of limitation samples in the supple-
mentary). This can be overcome by improving the Style-
GAN encoder or applying an additional diffusion method
(details in the supplementary) to the resulting image. Sec-
ond, hair not covered by hair mask can be noticeable in the
result (row 4 of limitation samples). A more precise hair
mask by a better extractor or by hand can help to resolve
this problem. Third, although dilating and blurring the hair
mask can prevent the artifact caused by the shadow under
hair, it is still not good enough in extreme lighting condi-
tions (row 5 of limitation samples). Shadow removal could
be applied to the face region beforehand for improvement.

Although 3D faces reconstructed from single images or
video usually do not contain hair, the resulting images gen-
erated by our work may still raise ethical concerns. Our
work may benefit hair design and 3D face generation, but
we still encourage such an editing operation on a real por-
trait image should have consent from its owner.
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