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Abstract Deep learning has been successfully used for
tasks in the 2D image domain. Research on 3D computer
vision and deep geometry learning has also attracted attention.
Considerable achievements have been made regarding feature
extraction and discrimination of 3D shapes. Following recent
advances in deep generative models such as generative adver-
sarial networks, effective generation of 3D shapes has become
an active research topic. Unlike 2D images with a regular
grid structure, 3D shapes have various representations, such
as voxels, point clouds, meshes, and implicit functions. For
deep learning of 3D shapes, shape representation has to be
taken into account as there is no unified representation that
can cover all tasks well. Factors such as the representativeness
of geometry and topology often largely affect the quality of
the generated 3D shapes. In this survey, we comprehensively
review works on deep-learning-based 3D shape generation
by classifying and discussing them in terms of the underly-
ing shape representation and the architecture of the shape
generator. The advantages and disadvantages of each class
are further analyzed. We also consider the 3D shape datasets
commonly used for shape generation. Finally, we present
several potential research directions that hopefully can inspire
future works on this topic.

Keywords 3D representations, geometry learning, genera-
tive models, deep learning

1 Introduction
With the rapid development of 3D acquisition and modeling
techniques [1], 3D data can be efficiently captured from the
real world or created with easy-to-use modeling software.
Furthermore, recent advances in Internet tools, especially
online repositories, allow 3D shapes to be shared among
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users [2]. As a result, 3D shapes are largely available nowadays
and have been widely used for important applications such as
entertainment and games, robotics and autonomous systems,
virtual and augmented reality.

Concurrently, with the explosive growth of data [2, 3] and
the significantly enhanced power of modern computational
devices [4], deep learning based on large-scale neural net-
works has become an active research area, and a fundamental
technique in computer vision and computer graphics [5, 6].
Following the excellent results of applying deep learning to 2D
images [7–9], researchers have also adopted deep learning for
3D shape understanding and processing. Many works based
on deep geometry learning have demonstrate its superiority
over traditional methods [10–12]. Since deep learning often
requires a large amount of data to train models, building and
benchmarking 3D shape datasets has also become particularly
important [2, 13].

This survey aims to review the use of deep learning tech-
niques to generate 3D geometric shapes (see Table 1). Com-
pared to traditional 3D acquisition and modeling techniques
that focus on the precision and quality of the resultant shapes
via hand-crafted features and algorithms, deep-learning-based
3D shape generation has the advantage of learning a com-
plicated yet comprehensive latent space of 3D shapes. Thus,
it enables more creative generation and exploration of novel
shapes, as well as easy manipulation of shapes in the latent
space, such as shape interpolation and extrapolation.

On the other hand, deep-learning-based 3D shape genera-
tion also poses new challenges. Compared to 2D images, the
complexity and irregularity of 3D shapes and the different
requirements of practical applications have resulted in the lack
of a unified representation for 3D shapes [139]. Instead, vari-
ous 3D shape representations are used, such as voxels, point
clouds, meshes, and implicit functions. Each 3D representa-
tion has its own data structure, advantages, and disadvantages.
These factors must be taken into account when learning to
generate 3D shapes. This survey attempts to comprehensively
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Table 1 Overview of works on deep 3D shape generation according to shape representations and generator types.

3D Representation
Generator network architecture

Encoder-Decoder Generative Model
GAN based VAE-based Flow-based Other

Voxel [14–20],
[21–27]

[28–32],
[33–37] [29, 35, 38–40] - [41–44]

Point Cloud [45–51],
[52–56]

[57–64],
[56, 65–70] [45, 71, 72] [73–77] [78–82]

Mesh [83–87],
[88–92] [93–96] [97, 98] - [99–101]

Implicit Representation [102–106],
[107–111] [112–115] [116] [117] [118, 119]

Structure-based [120–124] [125, 126] [127–132] - [133–138]

review existing works according to representation.
For 3D shape generation, the most important component

of the deep learning model is usually a generator or decoder
to construct 3D shapes from the latent space. It may be
coupled with an encoder that maps 3D shapes into the latent
space. Unlike discriminative tasks such as shape classification
[140, 141] and segmentation [142, 143], 3D shape generation
as a generative task is more complicated, as it requires learning
a proper distribution in the latent space rather than a feature
extractor or discriminator for a specific goal. Also, 3D shapes
with good quality and variation are desired when generating
and manipulating samples in the latent space. When reviewing
existing works according to representation, we also categorize
them according to their deep learning models’ architecture,
particularly the generator.

In the following, in Section 2, we briefly provide a back-
ground to 3D shape representations and deep learning network
architectures. In Section 3, we analyze prior works according
to their 3D representation and network architecture. Then, we
provide information on collected datasets used for 3D shape
generation in Section 4. We discuss potential future research
directions in Section 5, and draw conclusions in Section 6.

2 Geometry and Learning Background

This section introduces 3D geometry learning, the basis of 3D
shape generation using deep learning, from both geometric
and learning aspects. Interested readers may refer to recent
surveys [139, 144] for more detailed reviews. Section 2.1
introduces prevalent shape representations for 3D geometry
learning, including voxels, point clouds, meshes, implicit
functions, and structure-based representations (see Fig. 1).We
present the commonly used neural network architectures for
data generation in Section 2.2.

2.1 Shape Representations for Deep Learning
2.1.1 Voxel Representation
The constituent pixels of a 2D image provide a stable and
uniform structure for the image. Analogously, voxels with
an orderly and regular structure are an intuitive extension of
pixels in 3D space: voxel representation is the 3D counterpart
of pixel representation. Thus, voxel-based neural network
architectures can be straightforwardly constructed by extend-
ing image-based structures by expanding the dimensionality
of the learning operators such as convolution, pooling, etc.
from 2D to 3D [145, 146]. However, the speed of the deep
learning model is greatly affected by the dimensionality in-
crease. Therefore, the resolution of the 3D voxel grid is often
limited as a trade-off, which can easily introduce step artifacts,
affecting the quality of the generated shapes.
2.1.2 Point Cloud Representation
A point cloud is a more accurate representation of 3D shapes
than voxel representation. The 3D coordinates of point sam-
ples directly represent shape geometry. Their efficient and
concise characteristics make point clouds attractive to re-
searchers. Another reason for their popularity is that point
clouds are often the raw output format of 3D acquisition de-
vices. Due to the advances in equipment, such as Kinect [1],
cost reductions and accuracy improvements of 3D data cap-
ture have made point cloud data acquisition no longer an
issue. In addition, the massive data and simple data structure
of point clouds are relatively favorable for deep learning.
However, point clouds lack the characteristics of spatial or-
der and arrangement normally required in deep learning,
so instead order-invariant operations like max-pooling as in
PointNet [147] or multiple transformation matrices before the
convolution operator [148]are needed to compensate.
2.1.3 Mesh Representation
Like point clouds, meshes are another accurate discrete 3D
shape representation. Mesh representation further conveys
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Fig. 1 Different 3D shape representations, using: (a) voxels, (b) a point cloud, (c) a mesh , (d) an implicit representation (signed distance
function), (e) a structure-based representation.

information about discrete patches while providing the coor-
dinates of each vertex. The topological connections between
mesh vertices recorded by these discrete patches constitute
a piece-wise linear approximation of the entire shape sur-
face, serving as a higher-quality 3D shape representation
than a point cloud. At the same time, meshes consume less
memory than a voxel representation of the same resolution
as they only represent the boundary surface rather than the
entire volume. However, the irregularity and complexity of
mesh topology make it challenging to use for deep learning.
Researchers are continuing to explore ways of transforming
meshes into a latent vector coding that can be used in deep
learning. Recently, various architectures have been developed
to learn mesh features by defining basic deep learning opera-
tors (e.g. convolution, pooling) based on a specialized mesh
structure [149–151].
2.1.4 Implicit Representation
Implicit representations usually rely on implicit functions
such as the occupancy function [103] or signed distance
function [102] to describe the shape of a 3D model. The
neural network learns implicit functions at points and faces
that define unique spatial relationships. Implicit representation
allow flexible shape topology unlike the fixed topology of
a mesh. Moreover, with reasonable memory consumption,
implicit representations can increase resolution continuously.
However, as the generator output of a deep learning network,
an implicit representation cannot reflect the geometric features
of the model and usually requires a post-processing stage,
like marching cubes [152], to convert it into an explicit shape
representation, such as a mesh, before it can be used by
downstream tasks.
2.1.5 Structure-based Representation
Structure-based representations decompose a 3D model of
a complex shape into a collection of shape primitives. The
structure and geometric details of the primitives are usually
utilized for training. Structure-based representations pay more

attention to high-level structural features between parts of
the shape, such as orientation relationships, symmetry, and
contact relationships. Compared to the previously mentioned
accurate shape representations, using a structure-based repre-
sentation for 3D shape generation cannot accurately reproduce
geometric details but allows better overall shape generation
and control.

2.2 Neural Networks for Data Generation

2.2.1 Types

From a 3D generation perspective, we can divide standard
neural networks into two different types. The encoder-decoder
type, mainly like an autoencoder [153], is usually used in
a supervised learning task such as generating 3D shapes
from inputs in forms such as images or incomplete point
clouds. The generative model type includes popular models
for generation tasks such as GANs [154], and VAEs [155].
Moreover, some models share elements of both of the above
types.

2.2.2 Encoder-Decoder

Encoder-decoder networks can be divided into two parts, as
implied by the name. First, an encoder typically encodes the
input data into a vector in the latent space. As a generator, a
decoder ending with deconvolution or fully connected layers
is commonly used for shape generation or reconstruction.
This type of generator can achieve good performance in a
well-trained autoencoder. Most supervised generation tasks,
such as 3D reconstruction from a single image, utilize this
type of generator.

2.2.3 Generative Models

Among a wide range of generative models, GANs, VAEs,
and flow-based models are the most commonly used for 3D
shape generation. Here we briefly review the basic ideas of
these models, used in the discussion of 3D shape generation
in Section 3.
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Fig. 2 A deep 3D shape generator is a network that can recover
a 3D shape through an encoded vector or under the guidance of a
latent vector.

Generative adversarial networks, originally proposed in
[154], achieved a significant breakthrough, training a genera-
tive model by confronting two networks. A GAN consists of
two networks: a discriminator, which estimates the probability
that a sample comes from the real data distribution, and a
generator, which approximates the real data distribution by
trying to fool the discriminator with synthetic samples. The
two networks are trained simultaneously via a max-min game.
GANs provide a good solution to model data generation posed
as an unsupervised problem.

Variational autoencoders [155], another classical gener-
ative model, appeared almost simultaneously with GANs.
However, while GANs aim to generate new images, VAEs,
in addition to this, want to learn an implicit representation
and model the distribution of the data. In other words, the
dependency from sample variable z to distribution x in VAE
is random, while in GAN, it is deterministic. This makes the
inference of VAEs relatively well-defined and the inference
of GANs relatively pathological.

Flow-based models differ again. The training process is
directly based on maximum likelihood estimation. The clas-
sic generative flow model uses a reversible neural network
[156–161], and can find a bilateral path not only from the
distribution A to distribution B but also from B back to
A. Due to the inverse function, there is no need to train an
inference model.

As research on generative models for 2D images has pro-
gressed, attention has begun to shift from 2D image generation
to 3D shape generation. Classical generative network models
such as GANs and VAEs are used to generate or restore 3D
shapes. However, due to the lack of a unique 3D shape rep-
resentation, classical generative models encounter different
difficulties in generating 3D shapes. This has motivated re-
searchers to explore new methods of 3D model generation. In
order to distinguish it from the traditional generative model,
from now on in this survey, we say that a network that can
recover the 3D shape through an encoded vector or under the
guidance of a latent vector is a deep 3D shape generator, as

shown in Fig. 2.

3 Learning to Generate 3D Shapes
In this section, we comprehensively review use of deep learn-
ing to generate 3D shapes. We first categorize existing works
based on the 3D shape representation employed, includ-
ing voxels (Section 3.1), point clouds (Section 3.2), meshes
(Section 3.3), implicit representations (Section 3.4), and
structure-based representations (Section 3.5). Then we make
further classifications depending on the type of generator
used for 3D shape generation. A brief summary of generator
types and works reviewed in this survey are listed in Table 1.
For each representation, we also provide an overview timeline
of representative methods.

3.1 Voxel-based Shape Generation
3.1.1 Basics
Voxel representation uses a regular lattice to divide three-
dimensional space: the smaller the size of each voxel, the
finer the shape details expressed by the voxels. A mesh
representation can be extracted from a voxel representation by
methods such as marching cubes [152]. The most significant
advantage of voxel representation is its regular structure.
Since voxels are a straightforward extension of pixels, many
deep learning methods used on 2D images can be directly
extended to 3D voxel shapes.
3.1.2 Encoder-Decoder
For the supervised 3D shape generation task, many works use
customized generators to generate or reconstruct 3D shapes
in voxel representation from the latent embedding of 2D
images. Using the regular structure of voxel representation,
the generators in [13, 15, 16] are based on 3D convolutional
neural networks for predicting geometric shapes.

In early work, Yan et al. [14] introduced a perspective
transformer net that can generate volumetric 3D shapes from
images without 3D supervision. First, the input image is coded
into the latent unit as a 1× 1× 512 vector by a convolutional
encoder. Then, in the decoder, a volume generator recovers
the shape at 32× 32× 32 size. The perspective transformer
module then projects a 3D sample to a 2D silhouette for
reconstruction supervision. Meanwhile, Girdhar et al. [15]
proposed a baseline work for 3D shape generation from image
priors, called a TL-embedding network (see Fig. 4). The
T-net, a 3D convolution-based autoencoder, learns both the
3D shape embedding feature and the 2D embedding feature
of their rendered images. The L-net uses the 2D encoder and
3D decoder to infer the output for input images. Euclidean
distance loss is applied to align the embedding vectors from
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Fig. 3 Timeline of shape generation methods based on voxel representation.
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Fig. 4 Architecture of TL-NET for 3D voxel generation (from
[15]). Input and output are 20 × 20 × 20 voxel grids. In T-net
training, images are rendered based on the input 3D models. In L-net
testing, images come from real data.

the corresponding 3D shape and 2D image. Furthermore,
sigmoid cross-entropy loss is applied for reconstruction su-
pervision. The 3D Recurrent Reconstruction Neural Network
(3D-R2N2) [16], another prevalent baseline method for 3D
voxel generation, applies the standard long short term memory
(LSTM) mechanism as a 3D convolutional LSTM between
the 2D-CNN encoder and 3D deconvolution based decoder
(see Fig. 5).

Generic shape generation methods like MarrNet [17] go
through a 2.5D sketch to decouple input into normal, depth,
and silhouette. Then an autoencoder is used to estimate shapes
from the above information. Based on MarrNet, ShapeHD [18]
introduces a naturalness loss with an adversarially pre-trained
convolutional net as a discriminator to improve generation
quality. Another derivative of MarrNet is GenRe [19], which
considers generalizing the model to unseen categories by
decoupling geometric projections from shapes. Using multi-
view images (i.e. images from multiple viewpoints) can

Fig. 5 Overview of 3D-R2N2 [16]. The network takes as input
a sequence of images from arbitrary viewpoints and produces a
voxelized 3D reconstruction. Image courtesy of [16].

bring more priors to help shape generation; a learnt stereo
machine architecture was proposed by Kar et al. [20]. Liu
et al. [21] proposed the Variational Shape Learner (VSL) as
an unsupervised 3D voxel generative model built on Neural
Statistician [162]. This model can extract expressive features
and generate 3D shapes from sampled latent vectors. The
shape encoder with skip-connections learns global latent
features while the shape decoder inverts the encoder and
translates latent features back to voxel-based 3D shapes.

To reduce memory consumption, octree generative net-
works (OGN) [22] adopt a hierarchical, memory-efficient
octree data structure to generate high-resolution voxels with
an up-convolution decoder built from three fully connected
layers. Häne et al. [23] reconstruct 3D shapes in steps with a
coarse-to-fine approach. An octree structure is adopted here
for high-resolution voxel generation.
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(a) Hybrid grid-octree structure of OctNet

(b) Spatial structures in different layers of OctNet

Fig. 6 OctNet [163] learns a voxel representation at high resolution
with low memory consumption. Images courtesy of [163].

Following efficient octree-based learning methods [163,
164] (see Fig. 6), a two-stage 3D-CFCN (cascaded fully
convolutional network) architecture was proposed by Cao
et al. [24]. Later, Liu et al. [25] presented a coarse-to-fine
approach for generating high-fidelity volumetric 3D shapes
from noisy and incomplete input. Following Cao et al., octree-
based learning [22, 163, 164] was adopted as the backbone
in [25] to reconstruct high-quality shapes. A raw RGB-D
scan input is used to fuse a low-resolution truncated signed
distance function (TSDF) volume with color. In the first 3D-
FCN, a structure-related feature is learned to guide the second
3D-FCN, which accepts a high-resolution TSDF and color
as input and generates high-resolution patches. Generation
from two different resolutions of 3D-FCN can better handle
the global and local features of the 3D shape.

Unlike the above octree-based frameworks, Pix2vox [26]
adopts a coarse-to-fine approach to generate a voxel-based
shape from single or multi-view images. Decoders with
five 3D transposed convolutional layers generate shapes for
different input latent codes and fuse them to produce a coarse
shape, which is refined by a U-Net like 3D convolutional
encoder-decoder module.

Recently, Yang et al. [27] investigated how to use shape
priors and hidden information from images to help generate
better 3D shapes. A robust method called Mem3D that gener-
ates a 3D shape from an occluded or noisy background image

was proposed. With learnt shape priors structured in ‘image-
voxel’ pairs, Mem3D comprises not only a traditional image
encoder and a 3D volumetric decoder but also a memory
network and an LSTM shape encoder. The memory network
helps retrieve the closest 3D volumes to the input image and
send them to the LSTM shape encoder. The shape encoder
converts shapes into a vector with a shape prior using the
LSTM mechanism. Such a prior vector concatenated with the
image feature can offer hidden information about the unseen
part in the image to improve the generated results.
3.1.3 Generative Models
3D-GAN [28] and 3D-IWGAN [29] are pioneers for unsuper-
vised 3D voxel shape generation, using generative adversarial
networks (GANs) which extend 2D image generation ap-
proaches (see Fig. 7).

3D-GAN [28] generates voxel grids of size 64× 64× 64

from sampled Gaussian noise while the generator is designed
by referring to [165]. The cross-entropy loss used in the
classic GAN model is the main objective for the generator to
synthesize the shape while the discriminator is adapted from
2D. Smith et al. [29] proposed 3D-VAE-IWGAN to improve
generated results. Moreover, they used fully connected layers
with 2048 nodes instead of the sigmoid layer in the architecture
of 3D-GAN [28].

Meanwhile, Brock et al. [38] proposed a voxel-based VAE
architecture to learn 3D shapes. The encoder network consists
of 4 convolution layers with a fully-connected layer while
the decoder is duplicated but inverted. Inspired by ResNet
[166], Brock et al. introduced Voxception-ResNet to improve
performance. Also, in the VAE-based framework, Balashova
et al. [39] brought a structure-aware loss with a pre-trained
structure decoder to enhance generation quality.

Following 3D-GAN [28], the Visual Object Network
(VON) [30] improves the 3D generation results by use of
Wasserstein distance from WGAN-GP [167, 168], together
with a 2D texture network with 2.5D sketches through dif-
ferentiable projection. Chen et al. [31] proposed Text2Shape,
an architecture generating 3D voxel shapes from text input.
A joint representation learning approach is employed for
the cross-modality learning task. In addition, the CWGAN
framework is used for conditionally generating colored shapes
following input text. Knyaz et al. [32] proposed a pipeline
to recover 3D shape from a single 2D image through an
adopted z-GAN architecture [169] and frustum voxel model.
This provides precise alignment between voxel slices and
image contours. Huang et al. [41] presented 3DWINN based
on introspective neural networks [170] and involved Frechet
inception distance in module evaluation.
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Fig. 7 Typical 3D VAE-GAN architecture proposed in [28] and
improved by [29]. In the VAE, the encoder consists of 2D spatial
convolution layers with ReLU and batch normalization layers. 3D
volumetric convolution layers are used in the generator and discrim-
inator instead of 2D convolution. Unlike simple GANs, VAE-GANs
use the sampled latent representation as input to the GAN.

Following Projective GANs [33], which involve 2D pro-
jection into 3D GAN training, Li et al. [34] proposed the
Multi-Projection GAN (MP-GAN) for voxel-based shape
generation. Differential projection is defined as a non-linear
operator from a high to low dimensional distribution. The
generator is trained to compete with multiple discriminators,
assessing where the projection comes from. The view predic-
tion network with cluster module is employed to iteratively
alternate training with MP-GAN. Note that silhouettes as
projections from multiple views are not required to have
correspondences with the known viewpoints.

Unlike the traditional 3D GAN framework, Khan et al. [35]
proposed a generative model involving primitive compositions
which can be controlled with suitable interpretability. Before
generating complete shapes, it uses a primitive GAN to
generate a parsimonious shape configured by primitives. A
VAE is used to connect the primitive GAN and 3D GAN
by encoding the parametric primitives into latent space used
for sampling. This model can be jointly trained on all the
categories in the dataset.

Henzler et al. [36] introduced PLATONICGAN, which
can generate 3D volumetric shapes from an unstructured
collection of images while involving a rendering layer in their
network architecture. Like other works, the image input is
encoded into a latent vector by a generalized 2D feature extrac-
tor. Then, the generator accepts a latent vector and generates
a 3D voxel shape. The rendering layer accepts the generated
3D voxel with view sampling and additional information like
visual hull, absorption-only, and emission-absorption from
the image formation model. Finally, a rendered 2D image
is fed into the discriminator to complete the full generative

model training.
Other works are based on an autoregressive model for voxel-

based shape generation. The Octree Transformer [42] uses an
autoregressive generation method with an octree-based net-
work. With the transformer involved, the input is encoded into
a sequenced octree. Then, compressed shorter sequence latent
vectors can be trained with a classic transformer decoder. This
work shows that the proposed compression scheme can help
reduce the sequence length using the octree data structure
and still be compatible with autoregressive generation. Also
employing the autoregressive model is AutoSDF [40]. While
VQ-VAE [171] learns quantized and compact latent represen-
tations for images and Esser et al.[172] learned autoregressive
generation from discrete VQ-VAE, AutoSDF extends the
method of Esser et al. to the domain of 3D shapes but with a
generic non-sequential autoregressive prior. This method can
generate shapes from image and text as conditions through
ResNet or BERT [173] as the encoder, respectively.

DECOR-GAN[37] is a state-of-the-art method for detailed
voxel generation. For the generator, it utilizes a 3D CNN,
while for the discriminator, it uses 3D Patch-GANs [169] with
a receptive field of 18×18×18. While it is possible to reduce
memory consumption based on various space partitioning
techniques, these approaches have complex implementations,
and existing data-adaptive algorithms are still limited to
relatively small voxel grids.

In addition, some works use energy-based models
(EBMs) [174] for voxel-based shape generation. with 3D
DescriptorNet [43] and Generative VoxelNet [44] achiev-
ing state-of-the-art results. By associating VoxNet [146] and
[175], 3D DescriptorNet describes 3D shapes via a prob-
ability density function. It synthesizes and generates new
shapes through a Langevin dynamics approach to sample
the distribution. As an extension of 3D DescriptorNet [43],
Generative VoxelNet [44] adopts a multi-scale energy-based
generative model for high resolution 3D shape synthesis and
generation.
3.1.4 Summary
Based on direct extension of image generation, using voxels
for shape generation gives researchers the benefit of the
regular structure of voxels. Voxel-based shape generators
are analogous to pixel-based image generators in terms of
overall structure and loss functions. The regular representation
makes it easy for the generator to output shapes as a 3D
volumetric grid data. To generate the final results, operations
like up-sampling and up-convolution similar to those in a
3D CNN network are used in most works. However, such
shape generators require a large amount of memory due to
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Fig. 8 Timeline of shape generation methods based on point clouds.

the increased dimensionality, so generating high-quality 3D
shapes is challenging. How to reduce the memory cost is still
an important research issue.

3.2 Point-Cloud-based Shape Generation

3.2.1 Basics

In favor of using point clouds for 3D shape generation are the
conciseness of their geometry primitives, the simplicity of the
overall structure, and the convenience of 3D acquisition. The
main challenge is that point clouds lack a regular structure so
cannot easily fit into convolutional network architectures that
exploit spatial regularity.

3.2.2 Encoder-Decoder

While irregularity and disorder characterise point clouds,
how to learn from such unstructured data has rapidly become
a topic of interest in geometric learning. As pioneering work,
PointNet [147] proposed the use of multi-layer perceptrons
(MLPs) and symmetric functions like max-pooling to extract
features directly from the point set. Pointnet++ [176] adopted
U-Net and a hierarchical network structure as better adapted to
segmentation and classification tasks. Later, PointCNN [148]
was introduced with a convolutional operator, and Wang et
al. [177] involved a dynamic graph CNN by employing the
EdgeConv operator. Recently, the Transformer [178] was
first introduced to point cloud processing by PCT [141],
starting the fashion for using an attention model for point
cloud representation learning [179, 180].

After these point cloud learning methods were proposed,
many works have considered how to efficiently encode and
decode point clouds, especially how to generate, reconstruct
or recover point cloud shapes from partial inputs (e.g. images
and incomplete point clouds), as a supervised learning task.

The early MRTNet [45] introduced multi-resolution con-
volution into the encoder and decoder architecture like Point-
Net++. For shape generation, simple modification with addi-
tional VAE loss allows the generation of point clouds from
sampled latent codes. FoldingNet [46] proposed a folding-
style operation to generate point clouds by learning mapping
functions. Recently, an adversarial autoencoder was employed
in 3DAAE [47] for generating point clouds. A discriminator
is used to distinguish the sample generated. Furthermore,
shape interpolation and geometric arithmetic are achievable
using this framework.

A deformation-based method can also be used for point
cloud generation. DeformNet [48] proposed to generate
topology-preserving 3D shapes from single-view images
through free-form deformation (FFD) [181]. The initial tem-
plate shape is retrieved from a CAD model dataset. The 2D
CNN encoder and the 3D CNN encoder encode the image
and the initial template into a joint latent code. Then, the
decoder produces a deformation field for FFD layers to move
the point cloud following the output prediction to generate
the final point cloud.

To generate point clouds from images, customized gener-
ators based on PointNet and its variants [176] were rapidly
produced. The Point Set Generation Network (PSGN) [49],
as one of the pioneers utilizing a conditional shape sampler,
can predict multiple reasonable 3D point clouds from an
input image (see Fig. 9). Dual predictors are applied in their
generator to adapt to the large and smooth surface.

Recent works like Wei et al. [50] generate a point cloud
shape with a partially supervised generative network limited
using random input. A frontal constraint is adopted in single-
view training to force the model to pay attention to the front
part, while a diversity constraint simultaneously controls the
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Fig. 9 Point Set Generation Network (PSGN) [49], a pioneer of
point cloud generation. Improving the basic version involves branches
with deconvolution and fully-connected layers. Skip connections
are used to boost performance. Set union is applied for merging
predictions.

diversity of generation. This model can generate multiple
plausible shapes from a different view during inference. Going
further, Hu et al. [51] proposed a complete pipeline to generate
a densely textured 3D point cloud from a single image.

Other works [182, 183] based on point cloud rendering
have appeared in recent years. Lin et al. [52] use an image
encoder to map the input to the latent space and employ a
pseudo-rendering method for joint 2D projection optimiza-
tion. The generated 3D structures are fused with the final point
clouds from various viewpoints using a 2D convolution-based
structure generator. Insafutdinov et al. [53] learn both shape
and camera pose from two different input views with a differ-
entiable point cloud represented by density functions. Later,
Chen et al. [54] proposed a method generating a 3D point
cloud by 2D projection matching without 3D supervision.
Unlike other differentiable rendering-based works like [53],
Chen et al. [54] abandon per-pixel difference but chooses
sample point supervision from ground-truth silhouettes.

Komarichev et al. [55] proposed a method that generates
point clouds via joint learning. First, it learns a joint latent
embedding from input point clouds and image sets. Then, a
geometry-aware autoencoder encodes the point clouds. The
latent variable comes from the autoencoder, so they propose
a mixer network to map them into a joint latent space. Then,
a joint generative model is applied to generate a joint latent
vector which can be employed for several multi-modal shape
generation tasks to recover the latent vectors of the image and
point cloud separately. Finally, they obtain the point cloud and
the image from decoders corresponding to each embedding.

3.2.3 Generative Models

Point cloud generation based on GANs has become an active
topic in recent years. Achlioptas et al. [57] proposed the first
work to use a deep generative model to generate point cloud
shapes from sampled Gaussian noise vectors with r-GAN

Encoder Decoder Fully connected Layer
1D-Convolution Layer

Autoencoder

Activation Layer
BatchNorm Layer

Point Set Point Set
Feature-wise maximum

Latent variables

(a) The autoencoder architecture in [57].
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Fig. 10 Three different architectures proposed in [57]. (a) The
autoencoder adopts PointNet with 1-D convolution as the encoder.
Feature-wise maximum produces the k-dimensional vector for latent
space. (b) r-GAN and (c) l-GAN are used as baselines in much
following 3D shape generation work, not limited to point clouds.

or latent-GAN (see Fig. 10). Valsesia et al. [58] improved
r-GAN [57] by using graph convolution to achieve better gen-
eration results. Shu et al. [59] introduced another convolution
architecture called Tree-GAN using a tree-structure for point
cloud learning without prior-like connectivity in a graph [58].

PU-GAN [60] uses an upsampling technique to generate
a dense point cloud from sparse input. In the generator,
in addition to feature extractors, it also expands features,
reconstructs coordinates, and applies farthest sampling to
ensure a dense result.

Later methodologies based on GANs proposed differ-
ent technical solutions. To generate high-resolution point
clouds, a 3D generative model applied in the spectral do-
main was proposed by Spectral-GAN [61]. Unlike a spatial
GAN, it treats point cloud data as spherical harmonic mo-
ment vectors (SMVs) that encode points into the structure
and fixed dimension vectors with highly correlated relation-
ships between elements. This feature makes learning spectral.
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Fig. 11 SP-GAN [64] leverages a guiding sphere to generate point
cloud shapes with different geometry and topology. (a) Network
architecture; S is the guiding sphere vector and z is sampled noise
from a Gaussian distribution. Feature embedding and style embed-
ding are implemented using MLPs. GAM stands for Graph Attention
Module and AdaIN denotes Adaptive Instance Normalization. (b)
Outputs, courtesy of [64].

SAPCGAN [62] involves a self-attention mechanism in the
point GAN. A graph aggregation layer fuses a binary tree
framework and self-attention for precise point cloud data
generation. Li et al. [63] proposed HSGAN that incorporates
a graph convolution network with a self-attention mecha-
nism that can simultaneously learn local geometry and global
topology. SP-GAN [64] has a similar generator structure to
Style-GAN [184] and achieves plausible results (see Fig. 11).
This work binds sampled noise to a template sphere, thus
solving the point cloud discontinuity problem. With the graph
attention module based on DGCNN [177] and the adap-
tive instance normalization module as the feature encoding
extraction network, feature embedding is combined with hi-
erarchical features through style embedding. The coordinate
information of the 3D point cloud is recovered from the
feature map through a max-pooling layer and MLPs in the
last phase with exact iterations. Compared to previous work,
SP-GAN can generate point clouds with less noise and more
detail. The model implicitly embeds dense and consistent
correspondences between generated shapes.

After pointing out challenges faced by FoldingNet [46]
and AtlasNet [83], Tang et al. [65] introduced WarpingGAN
which includes code enhancement and unified local-warping
modules. In the generator of WarpingGAN, code enhancement
uses MLPs to change the input latent code into a global shape
code. The local code (split from the global code) concatenated
with the shape prior and the global feature is sent into the
unified local-warping module to predict points by MLPs. This
unified local-warping mechanism can conditionally warp the
uniform distribution of 3D priors into various local shape
regions, making the generation process more effective and
efficient.

In recent years, progressive methods have also been widely
employed in 3D point generation. Hui et al. [66] developed a
progressive deconvolution network for point cloud generation.
It maps the latent vector to a high-dimensional feature space.
A constructed deconvolution operation is proposed to use
the similarity between points and interpolation to enlarge the
feature maps. Classic MLPs are applied to generate locations
in point clouds after the deconvolution network. While the
conditional GAN idea was applied in the progressive model
PCGAN [67], another progressive point cloud generation
method is based on the dual-generator framework introduced
by Wen et al. [68]. While both generators share the same
discriminator, the first generator sends upsampled dense
results into the second generator to refine the rough shape,
like a noise filter.

Similarly, an autoregressive method called Pointgrow [78]
was proposed to predict the coordinate distribution of a 3D
point cloud from the training set. A deep neural network takes
previously generated values as input and outputs a distribution
of the values currently under consideration. When generating
points, the points are sampled one by one according to
the estimated probability distribution. Due to the inherently
iterative approach of autoregressive models, size of the point
cloud’s cannot be readily changed.

Based on the classic generative flow-based model, Point-
Flow [73] proposed a VAE-based point cloud generation
method with continuously normalizing flows (see Fig. 12).
Usually, flow-based generative methods learn to model the
distribution of points in a shape through reversible parametric
transformations of points. PointFlow generates point clouds
from a standard 3D Gaussian prior based on continuously
normalizing flows. Discrete normalizing flows with affine
coupling layers generate point clouds in DPF-Net [74]. Fol-
lowing the same training framework as PointFlow, SoftPoint-
Flow [75] generates point clouds with high-quality details due
to the ability to capture innate manifold structure. Pumarola
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Fig. 12 Architecture of PointFlow [73]. The point encoder is
adopted from [57]. Two continuous normalizing flows (CNF) are
trained with variational inference. CNF1 is used for modeling distri-
bution priors, while CNF2 focuses on modeling the reconstruction
likelihood as the decoder.

et al. [76] proposed a parallel conditional flow scheme called
C-Flow in a DNF-based architecture like DPF-Net. Mixed
normalized flow was introduced by Postels et al. [77] which
shows better shape generation results than single flow models.

Like flow-based models, energy-based methods have been
favored by researchers recently. Luo et al. [79] used an
energy-based model, a diffusion probabilistic model as in
Sohl-Dickstein et al. [185], to achieve conditional 3D shape
generation with an encoder for latent shape. Compared to
other flow-based models [73, 74], Luo et al. [79] adopted a
reverse diffusion Markov chain to model the distribution of
point clouds; it does not require invertibility or assume order.
On the other hand, flow-based models often treat 3D shape
generation as a probabilistic problem and solve it by sampling
and moving these points based on a learned distribution
transformation. Differing from Luo et al. [79], Zhou et al. [80]
proposed another denoising diffusion probabilistic model with
hybrid point-voxel representation to generate high-quality
3D shapes by filtering Gaussian noise. Meanwhile, Xie et
al. [81] proposed an energy-based model for point clouds
which learns each point’s coordinate coding and fuses them to
give a global energy for the whole point cloud. Furthermore,
this is also the first generative model that provides an explicit
density function for unstructured point cloud data. The learned
short-run Markov chain Monte Carlo (MCMC) method can
generate a diverse point cloud, reconstruct incomplete shapes,
and interpolate between point clouds.

Besides GAN-based architectures, the VAE is also a preva-
lent generative model in point cloud processing [45, 71, 72].
Gadelha et al. [45] proposed a multi-resolution tree structure
for point cloud learning called MRTNet. In detail, the encoder
and decoder consist of a sequence of multiple resolution
convolution blocks that receive input from each resolution
that can be upsampled, pooled, or concatenated. As a result,

MR-VAE is easily implemented and generates diverse point
clouds by sampling latent space. Kim et al. [71] introduced
SetVAE, which applies set transforms to the classic VAE
model. Since SetVAE learns the latent variable at various
scales by introducing top-down latent dependency and novel
bottleneck equivariant layers, multi-scale structure features
can be easily captured to build hierarchical data. Overall, Set-
VAE generates diverse, high-quality point clouds with fewer
parameters. Recently, Li et al. [72] proposed EDITVAE,
which learns decoupled latent information that is linearly
mapped from the global latent information and generates
diverse part-aware point sets by simply sampling a Gaussian
distribution.

In addition, there is some part-aware research into point
cloud generation like [56, 69, 70, 72, 121]. Mo et al. [69]
included the part-tree structure in the point cloud learning
PT2PC (part tree to point cloud) framework. Their conditional
GAN model is composed of a part-tree conditional generator
and discriminator. Besides the part-tree encoder and decoder,
point cloud decoding is also processed in the generator. The
generated points are encoded to form part-tree structures for
discriminator judgement. Gal et al. [56] proposed MRGAN
for part decoupling and adopt an AdaIN layer, similar to
StyleGAN [7], for each root node when shape generating, to
achieve part-control. Yang et al. [70] proposed CPCGAN for
controllable point cloud generation; it consists of a structure
GAN for middle-level point clouds with semantic labeling
and a final GAN for the complete point cloud.

Slightly differing from the above work, Cai et al. [82]
learned to use a gradient field to generate a point cloud from
an arbitrary prior point cloud. In addition, an extended score-
based method is used to learn the conditional distribution.
They treat 3D points as a distribution and use a neural network
to model the gradient of the log-density. The latent-GAN
proposed by Achlioptas et al. [57] is employed to learn the
distribution of the input latent code. Like other probabilistic
methods, additional training is required for the autoencoder
in a two-stage training process.
3.2.4 Summary
It is not difficult to see that in the classic model of point
cloud generation, the generator is likely to be the PointNet-
based decoder architecture, which often generates a fixed
sequence of 3D point coordinates. Chamfer distance and
Earth mover distance are the most commonly used metrics to
evaluate point cloud differences. Thanks to PointNet [147]
and PointNet++ [176], fully connected and deconvolution
layers are the most common methods for generators to produce
an unorganized point sequence.
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3.3 Mesh-based Shape Generation

3.3.1 Basics
As the most popular 3D shape representation in computer
graphics, meshes contain not only 3D surface geometry but
also topological information. However, the non-canonical
mesh structure with irregular topological connections and no
regular parametric domain causes difficulties for mesh-based
deep learning and generation tasks.

3.3.2 Encoder-Decoder
To simplify the problem, the mesh surface can be param-
eterized onto a 2D canonical domain so that classic CNN
architectures can be adopted for the parameterized shape
which has a regular structure. Depending on the topology
of the mesh, parameterization is usually performed in a 2D
plane (for disk-like shapes) or onto a sphere (for sphere-like
shapes).

Using parameterization in the 2D plane, one can implement
encoder-decoder architectures using standard 2D convolution
operations. For a spherical parameter domain, one has to
use spherical convolutions. Geometry images and spheri-
cal parameterizations are the most commonly used mesh
parameterization techniques [186, 187]. They are, however,
suitable only for genus-0 meshes with disk- or sphere-like
topology. Meshes of arbitrary topology need to be cut into
disk-like patches and then unfolded onto the 2D plane [188].
Finding the optimal cut for a given surface mesh, and more
importantly, finding cuts that are consistent across shapes
within the same category is particularly challenging. Naively
creating independent patches using geometry images for a
shape category and feeding them into deep neural networks
can easily fail to generate coherent 3D shapes.

Since a mesh is composed of vertices, edges, and faces,
some works treat the mesh as a graph, inspired by spectral
learning [189–192]. In Mesh-CNN [149], to resolve the am-
biguity that the one ring neighbors of an edge can present
the triangles in different vertex orders, the authors design
edge features as descriptors that are invariant to similarity
transformations. The pooling operator collapses edges for
feature aggregation to achieve a similar effect to pooling in
2D CNNs. Feng et al. [193] proposed MeshNet for deep
learning using mesh representation. While initial values of
faces are used to learn spatial and structural features, neigh-
boring information is aggregated and fed into the Mesh Conv
block. Then, a pooling function is applied to these features
to generate global features for downstream tasks. Recently, a
mesh representation learning method was introduced by Liu
et al. [194] which is based on a subdivision process to change

mesh geometric features. Later, based on the mesh subdi-
vision operation, Hu et al. [151] proposed SubdivNet, with
a novel convolution style operating on mesh faces directly;
convolution and pooling operators are defined analogously
to those for images. The convolution kernel operates on the
mesh surface and pools the faces from 4 to 1; it assumes the
surface has been remeshed into a Loop subdivision struc-
ture. To achieve efficient neighbor indexing for convolutional
operations on a graph-like mesh data structure, the re-index
operator from Jittor [195], a high-performance deep learning
framework for geometry, is adopted as a flexible solution.
Such an analogy enables a pyramid structure similar to an
image convolution network, resulting in very good results in
3D geometry learning tasks.

In terms of encoder-decoder-based mesh generation, the
early AtlasNet [83] generates surface patches to cover the
entire 3D shape. Image2Mesh [84] attempts to infer 3D
shape through 2D images by learned priors with free-form
deformation (FFD). Other works like Pixel2mesh [85, 86]
investigate 3D shape generation from 2D images using mesh
deformation based on a graph-based convolution network. The
key part is a deformation network to deform a template mesh
(usually an ellipsoid) for target shape generation (see Fig. 14).
The multi-layer structures of the deformation network cause
the complete deformation phase to operate from coarse to fine.
Instead of producing vertex positions directly, deformation-
based methods like [85, 86] generate vertex position offsets.
Together with geometric regularization based on Laplacian
loss, this strategy makes vertex positions change smoothly so
as to avoid self-intersections.

To overcome topological restrictions, Pan et al. [87] pro-
posed a topology-adaptive framework to help reduce artifacts
in mesh generation arising from topology. Their method
mainly relies on mesh deformation but has an additional
topology modification module that adapts intermediate topol-
ogy according to the input image. Shi et al. [88] focus on
mesh structure and parts, proposing a complete pipeline con-
sisting of a geometry structure extractor, a geometry-aware
mesh deformation module, and a fine-grained mesh editing
module. In another approach, Tang et al. [89] proposed a
skeleton-bridged method to learn 3D shapes with complex
topology in mesh representation. First, parallel MLPs are used
to infer key skeleton points. Then a base mesh is generated
from a coarse volume built on these inferred key points from
3D CNN. Finally, a graph convolution network optimizes
the vertices to produce the final mesh based on the encoded
input image. Meanwhile, Gkioxari et al. [90] proposed Mesh
R-CNN, which adopted Mask R-CNN [196] with 3D shape
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inference. A cube-based mesh is produced from predicted
coarse voxels, and vertex alignment with graph convolution
is applied later to refine the initial mesh. Hui et al. [91]
presented the DT-Net framework, which can generate meshes
with flexible topology. First, taking an image or voxel as input,
the topology formation module learns a function that maps
the latent input code to the template model with the correct
topology. Then, the technique in BSP-Net [137] is adopted
to assemble the implicit field of the template. After both
implicit and explicit templates have been produced, training
is performed with occupancy from the sampled ground truth
shape, while inference progressively applies deformation with
condition codes on the explicit template.

Unlike other 2D to 3D works, Zhang et al. [92] focused on
generating shapes from sketches. A viewpoint is also provided
as additional input to help generation. The convolution en-
coder decomposes image features into view space and shape
space. The decoder produces vertex offsets used for tem-
plate deformation. Differentiable rendering and discriminator
losses are used to increase the quality of generated shapes.

3.3.3 Generative Models

Various outstanding works have appeared in recent years
based on use of generative models for the generation of
shapes based on mesh representation.

Early on, Jimenez et al. [99] adopted a sequential generative
architecture extended from [197] to generate 3D volumes or
meshes. Variational autoencoders (VAEs) were later applied
for mesh model deformation to synthesize new shapes in [97].
After differentiable rendering received great interest for 3D
shape reconstruction and generation, research started to re-
place 3D supervision with 2D supervision [198, 199]. Chen
et al. [93] introduced the Differentiable Interpolation-based
Renderer (DIB-R) and proposes a framework for adversarial
3D object generation. This was the first generator to learn
shape and texture simultaneously.

A deformation-based method for human avatar generation
called StylePeople was proposed by Grigorev et al. [94],
which involves adversarial learning and neural rendering.
StyleGANv2 [184] is used to produce the neural textures that
implicitly encode non-modelled geometry like hair and cloth-
ing. The deformable body meshes based on SMPL-X [200]
are provided with the generated textures and rendered by the
neural renderer. Finally, the adversarial module composed
of three different discriminators is used to judge the output
identity.

Henderson et al. [100] proposed a generative model that
can generate meshes with texture. First, an encoder predicts
the posterior distribution of the latent variable from the input
image. Then, a shape decoder with a color decoder generates
vertex positions and face colors. A differentiable renderer
renders the final image, which is supervised by the image
reconstruction loss. In addition, mesh parameterization is also
utilized to ensure that the generated mesh does not contain
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self-intersection. Pavllo et al. [95] proposed a convolution
mesh representation, a displacement map used for template
mesh deformation. This is compatible with 2D convolution
architectures for both the mesh and its textures. Together with
a GAN framework, it can produce a textured 3D mesh from
a 2D image. While the convolution-based generator always
produces full textures, the generated displacement map and
texture are concatenated and sent to discriminators. Differing
from DIB-R [93], Pavllo et al. [95] used a pose-independent
representation converted from the convolution mesh in a 2D
GAN model to reduce issues caused by the pose. This work
also pioneered generation of 3D meshes from text conditions.
Later, Pavllo et al. [96] proposed a new pipeline to generate
meshes without keypoint annotations with the same generative
architectures as in [95].

Polygen [101] treats mesh generation as an autoregressive
sequence modeling process. They divide mesh vertices and
faces into different parts and apply the transformer mecha-
nism to model mesh vertex and face sequences with flexible
and variable lengths. They point out that the transformer’s
ability to aggregate information from parts can handle object
symmetries and non-local dependencies of mesh vertices.
This autoregressive model can generate a 3D mesh with
conditional contexts such as given object classes or images.

Recently, a part-aware textured mesh generation method
called TM-Net has been proposed by Gao et al. [98]. This
VAE-based model can generate a 3D textured mesh from
a random sample in the latent space while having different
textures compatible with shape parts. Note that mesh geometry
and texture are decoupled into PartVAE and TextureVAE.
The key part of TextureVAE comprises an encoder that maps
inputs into two continuous feature maps and a decoder that
uses the feature maps to reconstruct textures. Meanwhile,
PartVAE, adopted from Gao et al. [130] is used for encoding
the detailed part geometry and resembles SP-VAE [130] in
jointly encoding both global structure and part geometries.
3.3.4 Summary
Meshes are the most popular 3D shape representation in
computer graphics, with the advantage of having additional
topological information implied by mesh connectivity. How-
ever, this is also the main drawback in deep-learning-based
mesh generation tasks. How to overcome the mesh topology
constraint while not causing geometric and topological errors
during the shape generation process is the key problem to
solve. In contrast, other shape representations such as voxels,
point clouds, and implicit functions, are more flexible in
terms of shape topology, allowing more freedom for shape
generation.

3.4 Implicit-Representation-based Shape Generation

3.4.1 Basics
Shape generation based on implicit representations has also
attracted attention in recent years. While implicit represen-
tations cannot explicitly exhibit the underlying shape, the
Marching Cubes algorithm [152] provides a general way to
convert an implicit representation to an explicit represen-
tation. Meanwhile, the advantage of representing accurate
geometry and flexible topology largely benefits work on 3D
shape generation.

3.4.2 Encoder-Decoder
The two most commonly used implicit representations are the
occupancy function and the signed distance function (SDF).
The Occupancy Network (OccNet) [103] uses the occupancy
function, having value 1 inside the surface and 0 outside.
Similarly, DeepSDF [102] and DISN [104] represented a
3D shape by the signed distance to the underlying surface,
dividing space into three regions: inside (SDF < 0), outside
(SDF > 0), and on the surface (SDF = 0). Other implicit
representations are based on level sets [201], the unsigned
distance function [202], closest surface-point (CSP) [203],
and probabilistic directed distance fields [204]. A neural-
network-based generator is well suited by occupancy and SDF
as they are both continuous functions defined within a 3D
regular domain. As a result, implicit representations have
soon been exploited to learn and generate 3D shapes using
classic encoder-decoder architecture [104–111, 113].

IM-Net [113] learns the implicit field by a simple yet
effective decoder composed of MLPs that returns the value
showing the status (inside or outside) of the query point. Note
that such a decoder can be used in AE, VAE, or GAN as the
shape generator. Concurrent work, DISN [104], proposed
a deep learning network to learn an implicit function for
generating a high-quality 3D shape from a single image. It
uses the local feature of projected point location, a global
feature, and point features from MLPs to produce the SDF.
Liu et al. [105] proposed a method that generates 3D shapes
using implicit functions, without 3D supervision. The input
image is first encoded into a latent vector by ResNet18. Then
an implicit decoder consisting of 6 full-connected layers
correlates the latent vector with a 3D query point and infers
the occupancy probability. Later, Peng et al. [106] involved
volume convolution to improve OccNet [103], while moving
least-squares (MLS) functions are adopted in IMLSNet [107]
for generating shapes from noisy inputs. Unlike previous
works [102, 103, 113], IF-Net [108] uses Euclidean-space-
aligned deep features and classifies deep features at continuous
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query points.
As an extension of IM-Net, Li et al. [109] presented a

pipeline, D2IM-Net, for shape generation from a 2D image
based on an implicit function that can decouple details and
global features. A CNN-based encoder extracts global and
local features from the input image. While global features are
fed into a decoder with the query point to generate a coarse
shape as an SDF, another decoder for local features produces
two displacement maps (back and front) used to generate
details on the coarse shape.

Poursaeed et al. [110] proposed a shape generation method
that combines explicit and implicit representations and gen-
erates two shape representations simultaneously. After the
input is fed into different encoders, the encoded features are
sent to OccNet [103] and AtlasNet [83] branches to generate
results. Consistency loss is adopted here to couple two dif-
ferent networks together. Experiments show that the hybrid
model works better than the individual branches.

Differing from the aforementioned works, a local implicit
grid (LIG) representation was proposed by Jiang et al. [111],
which extends implicit shape generation to whole scenes.
Benefiting from implicit representation, an implicit decoder
trained with a 3DCNN encoder under a local grid structure can
be generalized to large scenes and unseen objects. Qualitative
results show that the local implicit grid can generate higher-
quality shapes than a trivial implicit representation. This work
also pioneered reconstructing scenes from sparse point sets
in a scalable manner.

3.4.3 Generative Models
A GAN model was utilized in the early work of Jiang et
al. [112] to generate shapes with details from an implicit
representation. A hierarchical architecture was proposed to
generate a coarse signed distance field and high-frequency
details separately. Specifically, the low-frequency generator
takes an up-convolution neural network as the backbone. It
then passes the filtered generated results to the high-frequency
generator as a condition to produce shapes with details.

While IM-NET [113] can be employed in an autoencoder
architecture, it can also be adapted to GAN-based models.
Achlioptas et al. [57] train a latent-GAN on high-dimension
shape features with a pre-trained autoencoder serving for
dimension reduction. In addition, normal Wasserstein GAN
loss is applied for the generative model in IM-Net. Resultant
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meshes extracted by Marching Cubes [152] show good mesh
quality and flexible mesh topology (see Fig. 16). In other
work [114] based on IM-Net, in the autoencoder structure,
the encoder receives a high-resolution binary voxel and maps
it into a grid of latent vectors. The decoder evaluates the
implicit function represented by this grid on query points.

Mezghanni et al. [115] proposed a physically-aware gen-
erative network for shape generation. Novel physical losses
are used to enhance the physical validity of generated shapes.
Moreover, a joint latent space coding of geometry, structure,
and physics is built for physically-aware generation. A physics
module consisting of a topology layer and neural stability
predictor is used for loss computation. Following the design
of latent-GAN [57], the generator and discriminator consist
of three fully-connected layers with WGAN-GP loss. The
trained decoder uses random samples from latent space to
decode 3D shapes.

As well as GAN-based models, autoregressive models
are popular in shape generation. Yan et al. [118] proposed
ShapeFormer, a transformer-based architecture to model con-
ditional distribution by a sequence consisting of quantized
features from the encoder. Furthermore, an implicit function
called the vector quantized deep implicit function (VQDIF)
was introduced, which can compress shape into a sequence
of sparse local features. After autoregressive sampling, the
VQDIF decoder converts this sequence back to the deep
implicit function used for mesh extraction.

VAE-type methods are also used in implicit shape gener-
ation. The OctField [116] adopted the octree data structure
to improve generation results. Both the encoder and decoder
employ a hierarchical structure. During encoding, three layers
consisting of MLP and max-pooling build a bridge for trans-
ferring information between child and parent nodes in the
octree. During decoding, the feature from the parent octant is
decoded into features with two indicators used for inferring
the probability of surface occupancy and the necessity of
the following subdivision through two MLPs with classifiers.
Compared to the local implicit approach of Jiang et al. [111],
OctField uses less memory and provides better modeling
accuracy.

Taking advantage of CLIP [205] in cross-modality with
deep implicit functions, Sanghi et al. [117] proposed a com-
plete pipeline, CLIP-Forge, to generate shapes from text (see
Fig. 17). It consists of three parts. First, an autoencoder com-
posed of a voxel encoder and an implicit decoder is trained.
Second, a pre-trained CLIP image encoder is used to train a
conditional normalizing flow model with latent information
from images and the above autoencoder. In the last, inferenc-
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Fig. 17 CLIP-Forge [117] uses CLIP space to bridge text, image,
and 3D shapes, to overcome the lack of paired text and shape training
data. In (b), stage 1 is the training procedure for the 3D autoencoder,
and stage 2 shows how CLIP is used for normalization flow model
training.

ing, part, the text input is coded by a pre-trained CLIP text
encoder and fed into the flow model trained in the second part.
The reversibility of the flow model makes it easy to produce
corresponding latent information, which can be decoded into
a 3D shape by a decoder trained in the first part. Note that the
encoder and decoder are exchangeable to suit different output
representations, like a point cloud.

Not using the standard generative model, Liu et al. [119]
proposed a 3D shape generation method with text guid-
ance using implicit maximum likelihood estimation (IMLE).
Specifically, the network generates 3D shapes in occupancy
representation with colors following the text description. It
first adopts a shape autoencoder from IM-Net to extract shape
and color features. Then, these two features are sent into a
text-guided module with a shape and color decoder and a
word-level spatial transformer (WLST). Local features from
the WLST help improve the spatial correlation implied by the
input text. For generation, a style-based latent shape generator
accepts features from encoders and generates diverse 3D
shapes.
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3.4.4 Summary
Due to their continuous and regular definition, implicit repre-
sentations have good compatibility with deep learning. In the
task of 3D shape generation, we can also perform continuous
and smooth interpolation in the hidden space. It can be found
that training an encoder-decoder structure based on implicit
representation often results in a smooth and continuous latent
space. Although the implicit representation is not intuitive
(cannot be explicitly visualized and modified), and requires
additional work to convert it into an explicit representation,
3D shapes generated using implicit representation are still
flexible and of relatively high quality.

3.5 Structure-based Shape Generation

3.5.1 Basics
Structure-based models have recently achieved higher perfor-
mance and quality in 3D shape generation due to their unique
features. Shape primitives are commonly used in structure-
based representation by describing a 3D shape using simple
primitives like oriented bounding boxes. Even though details
are less of concern in this representation, more attention is
paid to the global shape structure.

3.5.2 Encoder-Decoder
Researchers have attempted to encode 3D shape structures
and geometric features individually or jointly. In early work,
3D-PRNN, Zou et al. [120] came up with the idea of gen-
erating and combining 3D object parts in primitives using
generative recurrent neural networks. First, they encode the
depth image of the target object. They then feed the latent code
to several mixture density network modules with LSTM to se-
quentially generate a primitive set. Eventually, they combine
the primitives to build the 3D shape into the target.

CompoNet [121] generates point clouds in a structure-
based way. More specifically, they use parallel generative
autoencoders to learn part synthesis information first. After
that, a noise vector is fed into the part composition network
and then concatenated with the latent output from the part
synthesis unit. Finally, a fully-connected layer is used to
generate points (400×3 dimensions) and all parts are warped
to generate the sample shape.

Unlike another sequence based method 3D-PRNN [120],
PQ-NET [122] learns both structure combination and ge-
ometries of individual parts. To generate geometric shapes,
while a CNN-based encoder is employed for input image
coding, a decoder composed of an MLP generates implicit
functions which can be sampled at different resolutions. A
bidirectional stacked RNN [206] with GRU [207] is used

to build the encoder and decoder, which learns to assemble
and decompose in both ways for the autoencoder. Although
PQ-NET can generate shapes while decoupling structure and
geometry, it cannot learn global relations like symmetry and
cannot change topology during shape interpolation.

Unlike previous structure-based methods [121, 122], COA-
LESCE by Yin et al. [123] aligns parts and jointly synthesizes
an implicit surface for 3D shape assembly. With an IM-Net
decoder predicting an implicit surface, COALESCE focuses
on learning to generate output seamlessly with the given point
cloud parts.

The Neural Star Domain (NSD) [124] can be regarded
as using continuous functions defined on the surface of a
sphere. As a unified shape representation, NSD can define
both implicit and explicit shape representations of a primitive
shape. The NSD Network (NSDN) was proposed to generate
structured shapes within the neural star domain. Like Oc-
cNet, a bottleneck auto-encoder is employed in NSDN to
map images to shape embedding, and a translation network
outputs translation vectors from the shape embedding, then
the translation vector along with the embedded feature and
the given angular coordinates are used for pose inference
of the primitives. As a result, they achieved state-of-the-art
single-view reconstruction results.
3.5.3 Generative Models
In early work, Kalogerakis et al. [133] used a probabilistic
model to synthesize complex shapes. The model can represent
shapes with structural variability within a particular domain.
A new shape from this domain can be composed of existing
components. Features are split into continuous and discrete
features, and the model represents the joint probability distri-
bution over random variables, which is factorized as a product
of conditional probability distributions (CPDs). The training
phase learns the model structure and the parameters of all
CPDs. After training, synthesis of a set of components and op-
timization of component placement are applied to generate a
new shape. Later, probabilistic-based methods like [134, 135]
tried to learn from 3D shapes through part-based methods. By
fitting a template, they estimate point correspondence, rigid
alignment, segmentation, and shape a. In particular, Huang et
al. [135] constructed the template with newly learned parts
equipped with probabilities while decoupling shape structure
and geometry.

Differing from such probabilistic-based works [133–135],
Sung et al. [136] proposed ComplementMe, another strategy
to automatically synthesize shapes from the input. They
apply two networks for shape retrieval and placement to
perform incremental shape assembly. While the retrieval
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Fig. 18 Timeline of shape generation methods based on structural representation.

(a) Network structure of GRASS.

(b) Structure interpolation.

Fig. 19 The Generative Recursive Autoencoder for generating
Shape Structures (GRASS) [125] can interpolate two shapes by
operating on the fixed-length codes from the autoencoder. Images
courtesy of [125].

network predicts the probability distribution for the input
partial shape and samples the component complement from
the distribution, the placement network puts all components
in the right position for a complete shape. PointNet is used
for both retrieval and placement networks.

Nash et al. [127] proposed a variational autoencoder called
shapeVAE for 3D shape related tasks such as completion and
alignment. Since then more structure-based deep generative
models have been explored. GRASS (Generative Recursive
Autoencoders for Shape Structures) [125] was proposed to
describe full shapes by a binary tree. This work was one of the
very first to encode shapes by neural networks. A pre-trained
RvNN autoencoder is used to obtain root codes in the tree, and

a GAN module (see Fig. 19) is applied to learn the manifold
with the code space. Finally, a volumetric network generates
detailed geometry from the synthesized OBBs even though
the binary tree can overflow easily when the data size grows.

To consider geometry and structure of shape simultane-
ously, Wu et al. [128] proposed SAGNet, a generative model
jointly learning geometry and pairwise relationships of shape
parts. Specifically, the input 3D shape is sent into a 3D con-
volutional and fully-connected layer to extract features. Then,
the GRU-based encoder with an attention component jointly
learns the high-dimensional feature of geometry and structure.
Finally, a 2-way VAE provides latent sampling for diverse
generated results. Meanwhile, a hierarchical graph network is
used to generate a unified latent space for shape encoding with
structure and geometry variations as in StructureNet [129].

Wang et al. [126] employed a global-to-local(G2L) ap-
proach for 3D voxel-based shape generation. A GAN module
generates a 32× 32× 32 volume representing a global shape.
At the same time, global and local discriminators score both
the whole shape and the individual parts under quality losses.
Afterwards, the generated shape is fed into a part refiner (PR)
consisting of an encoder and decoder composed of convo-
lution and fully connected layers to complete the shape and
increase the resolution to 64× 64× 64.

A BSP-tree-based method [137] was proposed later con-
cerning convexes pieces of shape geometry (see Fig. 20).
Convex pieces as a new form of primitives involve three lay-
ers: hyperplane extraction, hyperplane grouping, and shape
assembly, and can better represent 3D shape details than prior
work like StructureNet [129]. Another stream of work aims to
decouple geometry and structure of shapes. SDM-Net [130]
and DSG-Net [131] both use VAEs as their generator to limit
the interpolation space and provide outstanding results in
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(a) Network architecture of BSP-Net.

(b) 3D shape generation from a single image.

Fig. 20 Structured single view reconstruction based on BSP-Net
[137]. Convex pieces having the same color share the same shape
semantics. Images courtesy of [137].

geometry and structure generation and decoupling.
Later works can generate high-quality structure and geom-

etry while controlling them to some extent. Yang et al. [131]
proposed DSG-NET to decompose a shape into two different
decoupled latent spaces based on the Cycled Disentanglement
mechanism. It can synthesize shapes while controlling struc-
ture and geometry (see Fig. 21). While the network design
is inspired by SDM-Net [130], the decoder reconstructs part
geometry by decoding the ACAP feature [208] and the center
vector. Note that both encoder and generator are trained in a
decoupled but synergistic manner.

In a different approach to previous structure-based methods,
Jones et al. [132] proposed ShapeAssembly which defines a
domain-specific language for shapes. In the ShapeAssembly
program, a hierarchical sequence VAE is adopted. It con-
sists of a decoder including multiple line decoders based on
RNNs. Moreover, as a language-like system, a differentiable
interpreter for ShapeAssembly is provided to help generate

Fig. 21 DSG-Net decouples shapes into geometry and structure
features. New shapes can be synthesized by fusing decoupled geom-
etry and structure features. Image courtesy of [131].

the desired shape parts.
The structure-based approach can also be used for human

parts generation. Paschalidou [138] proposed Neural Parts
that can generate 3D shapes with invertible neural networks.
Given an input image, the proposed network can express the
target object with several primitive shapes deformed from a
sphere. The first feature extractor maps the input to a global
feature representation and combines the global feature with
learnable embedding to generate the shape embedding for
each primitive. Then, a conditional homeomorphism compo-
nent consisting of several conditional coupled layers generates
points on the surfaces. An inverse mapping operator can help
compute point positions in 3D space related to the primitive.
Such inverse mapping can involve additional constraints on
the predicted objects. High-quality reconstructions are exper-
imentally demonstrated, showing the increased effectiveness
compared to other methods.

3.5.4 Summary

Structure-based methods usually generate 3D shapes with
good quality due to modeling the detailed shape structure
using primitives. However, the cost is also considerable.
First, they usually require additional annotations on shape
segmentation, making it sensitive to shape noise within a
dataset, and shape variations between datasets. Moreover,
some methods use generative models to generate parts before
composing the final shape, and often suffer from low quality
of the generated parts. Although some methods exploit shape
deformation at a fine-grained level, they can only handle
global topology during the assembly process but not at the
primitive level. Therefore, the generated shape can only meet
global structural requirements, but lack detailed control of
part geometry. Lastly, the number of shape primitives they
can handle is often restricted by the limited parameters of
the network, which affects the complexity of the generated
shapes.
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4 Datasets for 3D Generation
In addition to 3D geometry learning techniques, researchers
have also established a variety of datasets that meet the
need for training deep learning models. Using an appropriate
dataset can help the shape learning and generation process
according to the application.

There are several critical challenges for building 3D shape
training datasets for deep learning models. First, compared
to easy-to-collect, low-cost 2D image datasets, obtaining
corresponding 3D data is difficult. Many 2D datasets cannot
be directly used for 3D generation tasks (due to the emergence
of differentiable rendering [113, 198, 199], although some 2D
image datasets [220] can also be used for 3D deep learning
after specific preprocessing, but are not the main focus of
the present survey). The most commonly used datasets, such
as ShapeNet [2], ModelNet [13], and PASCAL 3D+ [215]
usually contain 3D CAD models. It is often difficult to obtain
corresponding real-world images. For supervised image-
based 3D shape generation tasks, in the absence of such
natural images, only synthetic images made by projecting
and rendering 3D models can be obtained. Finally, there is
no dataset that can meet all requirements for various shape
representations at the same time. The shapes in the dataset
need to be preprocessed (e.g. voxelized, sampled) in order to
be used for different representations.

Here we summarise widely-used datasets for deep 3D shape
generation; we also include self-contained image data which
can be used for image-based 3D shape generation. A summary
of dataset statistics can be found in Table 2.

ShapeNet [2] is the most commonly used dataset for ge-
ometry learning in recent years. It consists of 3,000,000
computer-aided design (CAD) models; 220,000 models have
been organized into 3135 categories, where 3D models and
2D images are aligned. In addition, there are also smaller
subsets of ShapeNet for research use, such as ShapeNetCore
(55 object categories, 51,300 models with verified category
and alignment annotations) and ShapeNetSem (270 cate-
gories, 12,000 models with verified category and consistent
alignments including real-world dimensions, category-level
material composition estimation, and volume/weight estima-
tion).

PartNet [213] is usually used for point cloud related tasks.
PartNet has a total of 16 classes, 50 parts, and a total of
16,846 samples.

ModelNet [13] is another well-known extensive shape
dataset of 3D CAD models. As the most widely used bench-
mark for point cloud analysis, ModelNet40 is popular because
of its wide range of categories, high quality shapes, etc. The

point cloud data are uniformly sampled from corresponding
mesh surfaces and then further preprocessed by moving to
the origin and scaling to a unit sphere.

ObjectNet3D [210] is a large scale dataset of 3D shapes
and 2D images. 2D images are aligned with the corresponding
3D shapes. The alignment provides both accurate 3D pose
annotation and the closest 3D shape annotation for each 2D
image.

TOSCA [216], a high-quality non-rigid 3D mesh shape
datasets, contains 80 models in 9 categories. The typical
number of mesh vertices is about 50,000. Models within
the same class have compatible triangulations with the same
number of vertices. This feature can also be used for shape
matching with point correspondences.

FAUST [217] is a human body dataset. It contains 300 real
human scans of 10 different subjects in 30 different poses,
acquired with a high-accuracy 3D multi-stereo system. While
having different identities and aligned with various poses,
these real-world scans are noisy and incomplete.

SUNCG [211] is dataset of 3D indoor scenes. It is a manu-
ally created large-scale dataset of 3D synthetic scenes with
dense volumetric annotations that can be used for semantic
segmentation, depth estimation, visual navigation, etc. It
contains 2644 unique scenes with 5,697,217 object instances.

3D Future [214] is a large-scale furniture dataset that con-
tains 20,240 synthetic images captured from 5,000 diverse
scenes, and 9,992 unique 3D industrial furniture shapes with
high-resolution textures. It also provides instance segmenta-
tion annotation and image rendering information, including
intrinsic and extrinsic camera parameters.

Pix3D [212] is a dataset for single-image-based 3D shape
modeling which provides precise 2D to 3D alignment. There
are 395 3D shapes in 9 categories with 10,069 image-shape
pairs with precise 3D annotation.

SUN RGB-D [218] is a dataset that includes 10,335 RGB-D
images with both 2D and 3D annotations for scene catego-
rization, semantic segmentation, and other popular tasks. It
contains 47 scene categories and 800 object categories.

A Large Dataset of Object Scans [219] is a multi-modal
3D dataset captured by consumer-level mobile 3D scanning
setups. It has a total of 10,933 RGB-D scans, 398 reconstructed
models, and 10,933 videos created from images.

5 Discussion
After the review of existing work on deep-learning-based 3D
shape generation, in this section, we discuss several potential
directions that hopefully can inspire future work in this area.
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Table 2 Datasets for deep 3D shape generation.

Dataset Year 3D Data Type #Object
Category Size Source Description

ShapeNet [2] 2015 3D CAD Models 3,135 3,000,000 Synthesis Large scale dataset, rich annotations.

ShapeNetCore [2] 2015 3D CAD Models 55 51,300 Synthesis Subset of ShapeNet with clean models
and alignment annotations.

ShapeNetSem [2] 2015 3D CAD Models 270 12,000 Synthesis Subset of ShapeNet annotated with
real-world dimensions (volume, weight, etc.)

ModelNet [13] 2015 3D CAD Models 662 127,915 Synthesis Manual classification
ModelNet10 [13] 2015 3D CAD Models 10 4,899 Synthesis Orientation aligned, completely cleaned
ModelNet40 [13] 2015 3D CAD Models 40 12,311 Synthesis Orientation aligned version produced by [209]
ObjectNet3D [210] 2016 3D CAD Models 100 44,147 Synthesis 2D images are aligned with 3D objects.

SUNCG [211] 2017 3D CAD Models 84 5,697,217 Synthesis Dataset of large-scale scenes,
dense volumetric annotations.

Pix3D [212] 2018 3D CAD Models 9 395 Synthesis 2D images are aligned with 3D objects

PartNet [213] 2019 3D CAD Models 24 26,671 Synthesis ShapeNet with fine-grained, hierarchical
instance-level 3D part annotations.

3D-FUTURE [214] 2020 3D CAD Models - 9,992 Synthesis Furniture with high-resolution textures.
2D images are aligned with 3D objects.

PASCAL3D+ [215] 2014 3D CAD Models 12 36,000 Synthesis Models annotated with dense pose
and occlusion-aware information.

TOSCA [216] 2008 Non-rigid Models 9 80 Synthesis Models in the same class have
per-vertex correspondence.

FAUST [217] 2014 Non-rigid Models 10 300 Real scans Human bodies

SUN RGB-D [218] 2015 RGB-D images 800 10,335 Real scans RGB-D image with rich annotations
and bounding boxes.

Object Scans [219] 2016 RGB-D images 44 23,000,000 Real scans Dataset includes images,
reconstructed meshes, and videos.

5.1 Multi-Representational Learning

Existing representations for learning 3D shape generation
include voxels, point clouds, meshes, implicit functions, and
structure-based representations. Nevertheless, each represen-
tation has its own limitations, which affect geometric details
or shape structure, or limit the design of the overall generative
network. Although the flexibility of deep implicit function
learning [102, 103] facilitates shape generation to some ex-
tent, implicit functions can neither explicitly express nor allow
intuitive editing of output surfaces as easily as meshes. On the
other hand, mesh representation also has its own disadvantage
of usually requiring a fixed topology in works based on mesh
template deformation [85, 86]. To break such a bottleneck,
researchers have started to combine different representations.
Shen et al. [221] first use SDF to predict the initial surface
and then refine it by graph convolution networks. A surface
loss is applied to train the explicit surface from the differen-
tiable marching tetrahedra layer to achieve refined surfaces.
Similarly, to overcome the drawback of implicit fields, Yuan
et al. [222] achieve explicit surface editing by manipulating a
NERF architecture [11], resulting in well-controlled editing
and rendering results. In other work, Hui et al. [91] lever-
age the strengths of both mesh-based and structure-based

methods. Given meshes are easy to deform yet preserve fine
details, but it is hard to change their topology, Structure-based
representations can help to identify the closest shapes having
the correct topology as initialization for mesh deformation,
which is critical for mesh-deformation-based methods. To
sum up, exploiting the advantages while compensating for the
weaknesses of different representations would be a valuable
direction to explore.

5.2 Higher Quality 3D Shape Generation

Existing works, albeit generating 3D shapes with good char-
acteristics, still lack the ability to generate geometric details.
Generative networks based on voxels and implicit repre-
sentations require massive computing resources to gener-
ate high-quality shapes with details. The Marching Cubes
method [152, 223] also has certain limitations in the embod-
iment of details. Compared to voxel and implicit represen-
tations, point clouds relies on a large number of 3D points
to represent a complete shape. However, the shape uncer-
tainty caused by the lack of local topological connections and
the ambiguous overall topology of the point cloud largely
affects the accuracy of the underlying 3D shapes. Although
meshes balance shape geometry and topology, its irregularity
poses challenges in designing generative networks and heavily
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influences details of the generated shapes. Structure-based
representation controls the overall structure and global fea-
tures of 3D shapes but is limited by the network characteristics
and result assembly [125, 131]. Hence it cannot sufficiently
control details of the generated shapes. Based on the above
observations, we believe there is still a need for more research
on how to better control the quality of generated shapes and
how to enable the generator to learn more precise details
while capturing overall shape features.

5.3 Larger 3D Scene Generation

While most generators aim to generate single object, a few
3D generative networks attempt to generate large scenes with
multiple objects. The main challenge is that the data volume
needed for a 3D scene is usually huge., and such a large amount
of data is infeasible as the output of a generative network.
Some scene generation networks use prior knowledge such
as scene semantics and object orientations to match objects
in the dataset to specific locations to form the generated
scene [224], but it is challenging to control the overall quality
and object compatibility. Existing works like [60, 225] using
point clouds and implicit fields are the most likely to generate
scene-level data in this regard. Point clouds and implicit fields
can be up-sampled to improve the representation quality while
not grasping the relationship between scene objects. Also,
structure-based shape representation has the potential to be
extended and learned at the scene level to express spatial
relations between scene objects and shape characteristics of
individual objects.

5.4 3D Backbone Network Design

For the generation of 3D shapes, a good backbone network
should be able to simultaneously encode 3D shapes into latent
embeddings and, at the same time, recover better shapes from
latent embeddings. Proposal of new backbone networks plays
an important role in generating 3D shapes. Every revolu-
tion in 3D model generation occurs after a novel, efficient
backbone network is proposed. Most generators using the
same type of representation share similar output layers, such
as voxel-based works [15, 16, 28, 32], point-cloud-based
works [49, 147, 176], MeshCNN [149] and SubdivNet [151]
for mesh representation learning, and OccNet [103] and
DeepSDF [102, 104] for implicit representations. Very re-
cently, the transformer mechanism has also been employed
in 3D deep learning [141, 226] with demonstrated advan-
tages compared to classic 3D convolutional networks. The
backbone network architecture usually determines the shape

representation, which in turn affects the design of the gen-
erator. 3D shape generation benefited from the development
of backbone networks for different shape representations and
will also inspire exploration of more generalized and effective
3D backbone network design.

6 Conclusions
This survey has given a detailed survey of the development
of deep-learning-based shape generation. First, we outlined
several commonly used 3D representations and popular deep
learning models for data generation. Next, we reviewed ex-
isting works according to the shape representation and the
generator used for generating 3D shapes. We have discussed
properties of the shape representation, the architecture of the
shape generator, and the characteristics of the results. Benefits
and limitations have also been analyzed. We have also covered
widely used public datasets for 3D shape generation. Lastly,
we have suggested a few future research directions. We hope
this survey has given interested readers a brief overview of
the field and provides inspiration for future work.
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