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Abstract
We present a novel anisotropic surface remeshing method that can efficiently eliminate obtuse angles. Unlike previous work that
can only suppress obtuse angles with expensive resampling and Lloyd-type iterations, our method relies on a simple yet efficient
connectivity and geometry refinement, which can not only remove all the obtuse angles, but also preserves the original mesh
connectivity as much as possible. Our method can be directly used as a post-processing step for anisotropic meshes generated
from existing algorithms to improve mesh quality. We evaluate our method by testing on a variety of meshes with different
geometry and topology, and comparing with representative prior work. The results demonstrate the effectiveness and efficiency of
our approach.

1. Introduction

With the recent development of 3D data acquisition and modeling
techniques, triangle mesh becomes the most popular shape repre-
sentation due to its simplicity, efficiency, and flexibility [BKP∗10],
benefiting enormous scientific and engineering applications such as
scientific visualization, physical simulation, digital entertainment,
just to name a few. Mathematically, triangle mesh composed by a
set of mesh vertices and edges (faces are enclosed by neighboring
edges) is a discrete shape representation, in which the geometric
information is embedded by vertex coordinates, and the topological
information is encoded by edges connecting incident vertices.

Given the underlying shape, how to generate meshes with desir-
able geometry and connectivity according to different application
requirements has attracted research attention for many years, lead-
ing to an active research area called surface remeshing [AUGA08].
The majority of work in this area focuses on isotropic remeshing
which aims to achieve meshes with equilateral triangles. Recent
works [YW16, HYB∗17, WYL∗19] further investigate how to sup-
press large and small angles (especially obtuse angles) on isotropic
meshes to favor applications that require robust numerical computa-
tion, in particular those relying on non-negative cotangent weights
to form Laplacian-Beltrami operator [PP93, CdGDS13, WLY∗16].

However, how to prevent obtuse angles for anisotropic meshes
adaptive to surface features is much less explored. The most relevant
is [SCW∗11] that leverages a different (hexagonal Minkowski) met-
ric which is computationally more expensive, and can only suppress
but not eliminate obtuse angles. Moreover, due to the reliance on a
new metric, the method is not compatible with the widely used Eu-
clidean metric based anisotropic remeshing techniques, restricting
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its scope for refining existing anisotropic meshes that are slightly
sub-optimal.

In this paper, we propose a novel anisotropic remeshing method
that directly operates on anisotropic meshes generated from existing
remeshing algorithms. Our method consists of two key components,
including a connectivity optimization which breaks the connectivity
barrier (a special mesh structure with an obtuse angle in each triangle
due to the defining elliptic metric for remeshing is highly anisotropic,
see explanation in Section 3.2.2 and illustration in Figure 2a) for
obtuse angle removal, and a geometry optimization which refines
the distribution of mesh vertices when necessary to ensure acute
angles. We test our method on diverse shapes with varying geometry
and topology and also compare with prior work. The results and
comparisons validate the advantages of our approach.

Overall our work makes two major contributions as follows:

• A novel remeshing method that can eliminate obtuse angles for
anisotropic meshes.
• An efficient connectivity and geometry optimization approach

that can improve mesh quality without resampling geometry and
rebuilding connectivity.

2. Related Works

As remeshing has been extensively studied in the geometry pro-
cessing field for decades, a comprehensive overview on all types of
remeshing techinques (e.g., isotropic/anisotropic, uniform/adaptive,
triangle/quadrilangle, surface/volume) is beyond the scope of this
paper. Interested readers may refer to [AUGA08] for a broad under-
standing of remeshing techniques, and [BLP∗13] for a later survey
on quad remeshing. Here we mainly discuss remeshing approaches
that are most relevant to ours, including anisotropic triangle remesh-
ing, and angle-specific remeshing.
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Anisotropic triangle remeshing. Unlike isotropic remeshing aim-
ing at regular face shape (equilateral triangle) and vertex valence
(ideally six) of the resultant mesh, anisotropic triangle remeshing
focuses on generating triangular face elements that are adaptive to
local surface anisotropy. The key problem here is how to evenly
distribute new mesh vertices and then regularly construct mesh
connectivity according to an anisotropic metric (in contrast to the
isotropic Euclidean metric) on the original surface. Similar to the
isotropic counterpart, recent anisotropic remeshing works can be
classified into three categories according to the strategy for opti-
mizing mesh vertex locations, including particle optimization (PO)
based, anisotropic centroidal Voronoi diagram (ACVD) based, and
anisotropic optimal Delaunay triangulation (AODT) based methods,
respectively.

PO-based methods treat mesh vertices as particles with repulsive
forces, and update mesh vertex distribution by particle repulsion
until the state of force equilibrium is reached. Lai et al. [LZH∗07]
utilized an anisotropic feature sensitive (FS) metric in a six di-
mensional space (vertex position and normal) to define repulsive
forces and perform particle repulsion. Then a local parameteriza-
tion based remeshing technique [SAG03] was adopted to first em-
bed local surface patches in 2D under anisotropic metric, and then
construct mesh connectivity using Delaunay triangulation. Connec-
tivity conflicts between patches need to be resolved using Delau-
nay refinement. Zhong et al. [ZGW∗13] reformulated the particle-
based anisotropic remeshing in terms of inner products and thus
is able to naturally extend to using a given Riemannian metric.
Anisotropic Voronoi diagram (AVD) [DW05] and restricted Voronoi
diagram (RVD) [YLL∗09] were used to generate mesh connectiv-
ity. In a very recent work, Zhong et al. [ZWL∗18] computed a
self-intersection free high-dimensional Euclidean embedding from
an arbitrary smooth Riemannian metric. Then the problem is con-
verted to isotropic remeshing that can be efficiently solved in the
embedding space.

ACVD-based methods rely on explicitly constructing Voronoi
diagram under an anisotropic metric and performing Lloyd-type iter-
ation [Llo82] to distribute mesh vertices. Du and Wang [DW05] pre-
sented ACVT by generalizing centroidal Voronoi tessellation (CVT)
to the anisotropic case, and then computed its dual mesh. Valette
et al. [VCP08] computed the discrete metric-dependent Voronoi
diagram directly on mesh surfaces for anisotropic surface remesh-
ing. Zhong et al. [ZSJG14] conducted global conformal parame-
terization on surface with simple topology first, and then perform
remeshing in 2D using CVT. To overcome the expensive computa-
tion of ACVD for each iteration, a novel surface embedding based
approach was proposed in [LB13, NLG15]. The problem is first
transferred to a 6D space consisting of vertex position and normal
(similar to [LZH∗07]). Then CVT is performed isotropically in
this high-dimensional space and mapped back to 3D to generate
the anisotropic mesh. Cai et al. [CGL∗17] proposed to use Princi-
ple Component Analysis (PCA) for asymptotic clustering, which
naturally leads to high-quality anisotropic remeshing.

AODT-based approach extends optimal Delaunay triangulation
in the isotropic case for anisotropic remeshing [CX04], where the
anisotropy is encoded by the Hessian of a convex function. Lo-
seille and Alauzet [LA09] proposed to use local convex functions to

cope with an arbitrary anisotropic metric. Fu et al. [FLSG14] con-
structed a convex function whose Hessian matches the anisotropic
metric for each mesh face, and iteratively optimized mesh geometry
and connectivity by minimizing the difference between the target
convex functions and their piecewise-linear interpolation over the
mesh. Budninskiy et al. [BLdG∗16] also employed Hessian-based
anisotropy to solve the dual problem of ODT, leading to optimal
Voronoi tessellation (OVT) that only contains convex cells with
straight edges, and admits an embedded dual triangulation that is
combinatorially-regular. Xiao et al. [XCC∗18] generalized the idea
of OVT by optimal power diagram (OPD) via functional approxi-
mation for anisotropic remeshing.

Although anisotropic surface remeshing has been explored from
different aspects, none of the above approaches can completely
eliminate all the obtuse triangles after remeshing. Our method can
be performed as an efficient post-processing step for anisotropic
meshes generated from existing approaches. It can further improve
mesh quality by eliminating all the obtuse angles within mesh faces.

Angle-specific optimization for remeshing. Almost all prior
works on angle-specific optimization for remeshing are specific to
isotropic meshes, for which various approaches have been proposed
to improve mesh quality, including CVT [LWL∗09], ODT [CX04],
centroidal Delaunay triangulation [CCW12], etc. The difference
among these approaches is how to measure mesh quality and how
to reconstruct mesh geometry and connectivity accordingly.

In recent years, a number of approaches focused on further im-
proving isotropic mesh quality by diminishing or even eliminating
angles that are too large or too small. Yan and Wonka [YW16]
augmented the original CVT formulation with a penalty term that
penalizes short Voronoi edges, which in turn avoids obtuse angles
in the dual triangulation. Hu et al. [HYB∗17] repetitively performed
edge collapsing, vertex relocation, and edge splitting to increase the
smallest angle of the mesh while bounding the approximation er-
rors and implicitly preserving features. Although the smallest angle
could be elevated to a pre-defined threshold (up to 40◦), this method
introduces too many obtuse triangles at the same time. Wang et
al. [WYL∗19] proposed a method which progressively eliminates
obtuse triangles and improves small angles at the same time. The
former is based on a simple vertex insertion scheme, and the latter is
through a vertex removal operation that improves the distribution of
small angles. Connectivity optimization and local smoothing further
improves the quality of the mesh.

The most relevant work in the anisotropic case is [SCW∗11]. It
relied on a hexagonal Minkowski metric rather than elliptic metric
in place of the Euclidean space to form a suitable triangle layout,
which suppresses obtuse angles but has no guarantee of elimination.
Additionally, due to the change of metric, this method is compu-
tationally expensive and is not compatible to anisotropic meshes
generated from elliptic metric by our method.

Different from previous work, our method is based on efficient
connectivity and geometry optimization without resampling mesh
geometry and rebuilding connectivity. Moreover, all the obtuse an-
gles in the anisotropic mesh can be effectively removed.
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connectivity optimization geometry optimization

Figure 1: Overview of our method which has two major stages, including connectivity optimization and geometry optimization. From left to
right: the input anisotropic mesh generated from [NLG15] with normal lifting weight 0.1, the intermediate mesh after connectivity optimization,
the final output mesh with all obtuse angles (highlighted in blue) eliminated.

3. Algorithm

The input to our method is an anisotropic triangle meshM(V,E ,F)
generated from an existing remeshing method, where V , E , F are
the vertex, edge, and face set of meshM, respectively. Our goal
is to output a refined mesh with all obtuse angles eliminated. Note
that unlike isotropic meshes that favor angles close to 60◦, for
anisotropic meshes, small acute angles commonly exist due to skinny
triangles in highly anisotropic regions, thus need to be admitted
rather than avoided.

3.1. Algorithm overview

As shown in Figure 1, our method contains two major stages. The
first stage is connectivity optimization. The basic idea is to adjust the
connectivity of the input mesh, such that the mesh connectivity will
not be a bottleneck for obtuse angle removal (Section 3.2). Based on
the intermediate connectivity optimization result, the second stage
is geometry optimization. It aims at optimizing the mesh vertex
locations such that all obtuse angles can be removed (Section 3.3).

3.2. Connectivity optimization

This subsection describes the algorithmic details of the connectivity
optimization stage.

3.2.1. Valence optimization

Given an input anisotropic meshM, we first perform valence opti-
mization [BK04] using a sequence of edge flipping to improve the
regularity of the mesh. The basic idea is to minimize the squared
sum of the difference between the valence of each vertex and its
corresponding optimal valence, which is 6 for inner vertex, and 4
for boundary vertex, respectively. Note that the edge flipping is only
performed if it does not affect the angle quality, i.e., introduce any
new obtuse angles. We also perform a sanity check afterwards to
see if any inner vertex with valence 4 is left. If so, we further apply
an edge collapse to snap it to one of its neighbors that minimizes the
largest angle in its one-ring neighborhood. This post process is very
useful, as valence 4 vertex could easily lead to obtuse angle incident
to that vertex.

3.2.2. Connectivity adjustment

In this step, we efficiently adjust the connectivity of the mesh to
break its limitation for obtuse angle removal, making it suitable
for geometry optimization in the next stage while preserving the
original mesh structure as much as possible.

As discussed in [SCW∗11], according to the elliptic metric used
in the CVT-based anisotropic remeshing approach, the resultant
mesh would have a large number of triangles with obtuse angles
in the anisotropic region (see Figure 2a). This is caused by the
fact that the defining elliptic metric for surface anisotropy is highly
anisotropic in such region. In other words, the metric changes very
differently in different directions due to factors such as varying sur-
face normals [NLG15] and normal curvatures [ZGW∗13]. As such,
the remeshing yields a special mesh structure with an obtuse angle
in each triangle bounded by the metric ellipse (iso-distance curve
under the elliptic metric). And given such connectivity constraint
over the anisotropic region, it is difficult to diminish obtuse angles
by geometry optimization on mesh vertices only.

Instead, a different metric called hexagonal Minkowski metric
(see Appendix A for more background) is used within the CVT
framework to generate mesh with a suitable connectivity to suppress
obtuse angles (see Figure 2b). However, the cost is to start the
expensive remeshing process all over again without preserving the
good triangles with only acute angles. Moreover, the obtuse angles
cannot be fully removed but only suppressed due to the existence of
many skewed triangles even under the new metric (see Figure 2c).

In this work, we present a novel optimization that locally ad-
justs the connectivity of the mesh when needed, while avoiding

(a) (b) (c)
Figure 2: (a) CVT-based remeshing result using elliptic metric. (b)
CVT-based remeshing result using Minkowski metric. (c) Skewed
triangles with obtuse angles from (b). We show anisotropic mesh
(black), its dual Voronoi diagram (gray), metric ellipse (dash black),
and metric hexagon (red) with six triangles.
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Figure 3: (a) Problematic metric hexagon (p-Hex) whose con-
stituent triangles have obtuse angles. (b) We perform vertex insertion
(e.g., insert v jk between v j and vk), and edge flipping (e.g., flip ei j)
to construct inscribed hexagon (i-Hex). (c) Inscribed hexagon (i-
Hex) with acute triangles. (d) Valence 3 vertex (black dot) will be
deleted afterwards.

expensive Lloyd-type iterations. The basic idea is shown in Fig-
ure 3. Inspired by the mesh structure from hexagon Minkowski
metric in [SCW∗11], we propose to first detect problematic met-
ric hexagons (called p-Hex as in Figure 3a), whose individual con-
stituent triangles have obtuse angles and are hard to optimize directly
on geometry. This is done by first marking all triangles with obtuse
angles, then grouping neighboring triangles to form hexagons, fi-
nally check if each hexagon is a p-Hex. For the last step, we estimate
the major and minor axis of the underlying ellipse as follows. We
first project the one-ring neighborhood bounded by the hexagonHi
to the tangent plane of the center vertex vi ∈ V , then we estimate
the major and minor axis of the underlying metric ellipse by simply
applying PCA of the projected vertices. Finally we check if the
incident edges {ei j,eik, ...} ⊂ E of vi are better aligned with the
major or minor axis. If it is the former case, we markHi as p-Hex,
otherwiseHi is more like Minkowski hexagon and no connectivity
adjustment will be applied.

With p-Hex all marked, we then locally optimize mesh connec-
tivity by constructing an inscribed hexagon (called i-Hex) for each
p-Hex (see Figure 3c). More specifically, as shown in Figure 3b, we
perform edge splitting by inserting a new vertex v jk at the middle
of each boundary edge e jk of p-HexHi. Then we flip {ei j,eik, ...}
within the one-ring neighborhood bounded byHi to form i-HexH′i .
Note that after all the edge flipping, there would be valence 3 and
valence 4 vertices generated depending on different spatial relation
between neighboring i-Hexes. Then we simply delete valence 3
vertices (see Figure 3d), and perform valence optimization as in
Section 3.2.1 to remove valence 4 vertices and other non-optimal
valences.

In this way, we are able to construct Minkowski-like metric
hexagons without explicitly performing the CVT-based optimiza-
tion with Minkowski metric, which is very efficient. Meanwhile,
the original mesh structure with all acute angles are also preserved.
Note that after connectivity optimization, obtuse angles might still
exist in the refined hexagonal structure due to skew distortion (see
Figure 2c). But the obtuse angles are usually close to 90◦ and can

be handled by the geometry optimization in the next stage, which is
not possible otherwise.

3.3. Geometry optimization

The optimized mesh connectivity from Section 3.2 serves as an
initialization for geometry optimization, which optimizes the loca-
tion of mesh vertices on the input mesh in order to remove obtuse
angles. However, due to inserting new vertices at the edges of a
p-Hex, new triangles with irregular shape can be introduced at the
boundary of an i-Hex region (region formed by multiple i-Hexes),
making geometry optimization hard to converge. To improve the
initialization, for the vertices at the boundary of i-Hex regions and
also their neighbors, we perform a fairness refinement based on
graph Laplacian, resulting in a better initialization for geometry
optimization.

Given a good initialization, a straightforward strategy would be to
formulate an optimization problem with mesh vertices as unknowns,
where the objective function penalizes obtuse angles while keeping
all vertices on the original input mesh. However, due to angles
are non-linear w.r.t. vertex coordinates and non-obtuse angle is an
inequality constraint (i.e., ≤ 90◦), such objective function would be
highly non-linear and strongly constrained, making the formulation
and optimization highly challenging.

On the other hand, it is obvious that face angle (enclosed by
two edges with three incident vertices) is a local property and only
involves three defining vertices. This allows us to employ an effi-
cient local-global optimization approach [BDS∗12], where local
projections and global fitting are performed alternately to reach the
optimum. In each local-global iteration, the local projections take
into account the constraints acting on individual mesh elements (e.g.,
mesh face with non-obtuse angles in our scenario), then the global
fitting reconstructs the whole mesh that best approximates the local
projected elements in a least squares manner.

More specifically, as our goal is to remove obtuse angles, the
local projection should project each mesh face into a constrained
space To consisting of all triangles without obtuse angles (suppose
obtuse triangle space is To). If a mesh face has no obtuse angle, it
simply projects to itself as it is already in To. Otherwise a non-linear
constrained optimization specific to that face can be performed,
which would be inefficient considering the number of faces and
the local-global iterations. And one can imagine that the closest
point in To would be a right triangle which is less desirable than an
acute triangle. As such, we propose a simple yet efficient, and also
geometrically meaningful way, to perform the local projection.

Our geometric projection is inspired by the typical obtuse triangle

(a) (b) (c)
Figure 4: (a) Typical obtuse triangle layout in a metric hexgon. (b)
Each obtuse triangle is locally projected to an isosceles triangle
with acute angles (in orange). (c) The global fitting step reconstructs
the mesh that best approximates the local projections.
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layout in a metric hexagon (see Figure 4a). This is due to skewed
distortion of a regular metric hexagon, in which each triangle should
be an isosceles triangle (a triangle with at least two equal sides)
whose vertex angle is the smallest acute angle. As such, we define
the projected counterpart of an obtuse triangle fi jk as an isosceles
triangle f ′i jk whose vertex angle coincides with the smallest angle
of fi jk, two legs are with the average length of the corresponding
two sides (see Figure 4b). In this way, each of the mesh face fi jk is

projected to f ′i jk ∈ To, where v′ jki is the projection of vi.

In the global fitting step (see Figure 4c), the following objec-
tive function (in a least squares form) is optimized to reconstruct
the whole mesh that best approximates the projected (non-obtuse)
triangles:

Fo(V) = ∑
i

∑
fi jk∈Ni

||vi−v′ jki ||2, (1)

whereNi is the one-ring neighborhood of vi.

In practice, the geometry optimization with the above global en-
ergy can effectively remove obtuse angles. However, the fairness of
the mesh may not be well preserved, leading to unevenly distributed
vertices in a local region, especially for those regions between two
mesh patches with original and adjusted connectivity, respectively.
Hence we also add a regularity term to take into account the fairness
of the mesh as follows:

Ff (V) = ∑
i

∑
v j∈Ni

||vi−v j||2. (2)

As a result, the overall global energy has the following form:

F(V) = woFo +w f Ff , (3)

where wo and w f are weights that balance the two energy terms.
Here we adopt a dynamic weighting scheme that applies wo =
1,w f = 0.01 at the beginning to regularize more of the optimiza-
tion, and decay w f to 0 when getting close to the minimum (only
10% of obtuse angles remain) to add more geometric freedom and
ensure convergence (i.e., only non-obtuse angles are left). This is

(a) (b)

(c) (d)
Figure 5: (a) Input anisotropic meshes with obtuse angles. (b)
Remeshing result by optimizing both Fo and Ff . (c) Result with-
out Fo. (d) Result without Ff .

similar to non-rigid registration that enforces more rigidity at first,
and allows more shape deformation later [TCL∗13]. Also, same
as Llyod-type surface remeshing, after the global fitting step, we
project the optimized mesh vertices back onto the original mesh to
ensure mesh fidelity for each local-global iteration. And the iterative
geometry optimization ends when no obtuse angle exists, which is
true for all the models tested in our experiments (see Section 4). To
demonstrate the effectiveness of Fo and Ff in Eqn. 3, we also run
geometry optimization by excluding one of the two terms as shown
in Figure 5. It can be seen that obtuse angles cannot be effectively
eliminated without Fo, and the fairness of the mesh is much worse
without Ff .

Remarks. In practice, we find that the geometry optimization may
lead to skinny triangles with very short edges. We simply collapse
these edges as in [DVBB13], when the length is less than 1/3 of
the minimum edge of the input mesh. Also, as shown in the inset
figure, the only special case where the optimization is trapped into
local minimum is when two obtuse angles (highlighted in blue)
share the same vertex rather than being alternate as in Figure 4a.
To solve this issue, we check such
case after each local-global iteration,
and perturb the common vertex (high-
lighted as the black dot) of the two
obtuse angles to the barycenter of
its one-ring neighborhood to escape
from local minimum (as this avoids
two neighboring obtuse angles).

4. Experimental Results

We evaluate our method by testing on various anisotropic meshes
with different geometry and topology. The anisotropic meshes
are generated using the available codes provided by the authors
in [NLG15]. The results can be found in Figure 10. It can be seen
that all the obtuse angles are removed from the input mesh. At the
same time, our algorithm preserves the original connectivity without
obtuse angles as much as possible. Table 1 presents the statistics
of our method based on the standard evaluation criteria for surface
remeshing. θmax is the maximal angle in a mesh. θ>90◦% indicates

(a) (b) (c) (d)
Figure 6: (a) Input anisotropic meshes with obtuse angles (high-
lighted in blue) generated from [ZGW∗13]. (b) Output of our method
by eliminating obtuse angles from (a). (c) Input anisotropic meshes
with obtuse angles generated from [FLSG14]. (d) Output of our
method by eliminating obtuse angles from (c).
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the percentages of the obtuse angles. Qmin and Q̄ave measure the
regularity of mesh faces given the underlying anisotropic metric of
the input mesh. An equilateral triangle (under anisotropic metric
here) has Q(t) = 1 while a degenerate triangle has Q(t) = 0. And
the larger of Q, the better regularity of the anisotropic triangle.

Note that our method does not rely on any parameter subject
to a specific anisotropic remeshing algorithm. Thus anisotropic
meshes from other approaches can also serve as input to our method.
Figure 6 shows some results by optimizing meshes from a PO-based
method [ZGW∗13] and an ODT-based method [FLSG14]. Note that
the latter already results in Minkowski-type metric hexagons. Hence
we do not perform connectivity optimization as the initialization is
already good for geometry optimization.

To demonstrate the applicability of our method, we also test on
anisotropic meshes with different emphasis on surface anisotropy.

Figure 7: Our results on anisotropic meshes with different level of
face anisotropy. From top to bottom: meshes with approximately 5k
vertices generated using [NLG15] with normal lifting weight 0.06,
0.1, 0.14, respectively. Left: input anisotropic meshes with obtuse
angles highlighted in blue. Right: output of our method with all
obtuse angles removed.

(a) (b) (c) (d)
Figure 8: Comparison between our method and [SCW∗11] on the
bone model. (a) Input mesh with 3000 vertices. (b) Output mesh
with obtuse angles only suppressed but not eliminated. (c) Input
mesh with 3000 vertices from [NLG15] with normal lifting weight
w = 0.1. (d) Our result with all obtuse angles removed. (a) and (b)
are adopted from [SCW∗11].

In other words, meshes with high anisotropy allows more skinny
triangles in anisotropic regions. This can be easily adjusted by tuning
the weight of normal lifting in [NLG15], where larger weight yields
more highly isotropic mesh. We use ascending weights to remesh the
same model while keeping the number of vertices fixed, resulting
three anisotropic meshes. Our method can effectively eliminate
obtuse angles on all of them (see Figure 7).

We further compare our method with the only work [SCW∗11]
that can suppress obtuse angles on anisotropic meshes. We use the
only mesh model used in that work to make the comparison as in
Figure 8. Note that as we cannot get available resources (i.e., codes,
binaries, models) from [SCW∗11] , we use [NLG15] to generate
a similar anisotropic mesh with the same number of vertices. Our
method can effectively remove all obtuse angles, while prior work
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Figure 9: Our geometry optimization converges within hundreds of
local-global iterations on different models with thousands of obtuse
triangles.
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Figure 10: Our results on various anisotropic meshes generated by normal lifting [NLG15] (with fixed lifting weight w = 0.1). Top row: the
input anisotropic meshes with obtuse angles highlighted in blue. Bottom row: the output of our method with all obtuse angles removed.

Model |V| |F| Qmin Qavg θmax θ>90◦% time
Fertility (Figure 1, 10) 4000/4262 8012/8536 0.3055/0.1521 0.7237/0.7273 171.18/90.00 36.75/0.00 20
Gargoyle (Figure 10) 4988/5164 9964/10305 0.0096/0.0976 0.7004/0.6881 178.21/89.99 45.04/0.00 34

ChineseLion (Figure 10) 8234/8238 16464/16472 0.2279/0.1059 0.7084/0.6816 176.59/90.00 42.60/0.00 42
Armadillo (Figure 10) 9782/7778 19560/15552 0.1058/0.0781 0.6648/0.6434 179.56/89.99 56.18/0.00 87

Kid (Figure 10) 8004/8403 16036/16834 0.0999/0.0840 0.6949/0.6602 175.54/90.00 46.67/0.00 75
Buddha (Figure 10) 17055/12442 34142/24904 0.0042/0.0785 0.6666/0.6295 179.92/90.00 68.24/0.00 186

Eight (Figure 6) 2000/2114 4004/4232 – / – – / – 152.80/89.99 25.19/0.00 6
Botijo (Figure 6) 11118/9986 22252/19988 – / – – / – 160.31/90.00 24.85/0.00 71

Bunny (Figure 7 top) 5000/5306 9996/10608 0.3061/0.1852 0.7723/0.7427 160.77/90.00 23.33/0.00 11
Bunny (Figure 7 middle) 5000/5116 9996/10228 0.2166/0.1196 0.7198/0.6605 163.78/89.99 37.41/0.00 20
Bunny (Figure 7 bottom) 4991/4917 9978/9830 0.1585/0.1453 0.6227/0.6215 174.59/90.00 46.67/0.00 23

Bone (Figure 8) 3000/3001 5996/5998 0.4409/0.2765 0.8119/0.8252 169.25/89.99 17.91/0.00 14

Table 1: The statistics of our method on different models. For simplicity, n1/n2 are measurements on input/out mesh. |V| is the number of
vertices; |F| represents the number of triangles. Computational time is measured in seconds. Other measurements are explained in the first
paragraph of Section 4. Note that ‘ – / – ’ is due to the measurement cannot be made (see Discussion and Limitation at the end of Section 4),
and ‘/’ is not for division.

can only reduce the number to a relatively small amount (4.6%
obtuse triangles as reported in the paper). Also, the efficiency is
discussed as a limitation in [SCW∗11] as several minutes are needed
to compute a mesh of several thousand vertices. In contrast, our
method only takes 14 seconds on mesh with the same size.

Performance. We implement our method using C++ on a Win-
dows laptop with 2.8 GHz CPU and 8 GB RAM. The ANN li-
brary [MA10] is used for closest point query. The majority of the
computational time is due to the geometry optimization in Sec-
tion 3.3, which is primarily affected by the number of obtuse angles
but not the total number of resampled vertices. The typical computa-
tional time is less than one minute for meshes with several thousands

of vertices, which is much faster than [SCW∗11] (even on a more
powerful PC with a 3.16 GHz Xeon CPU and 8 GB RAM). Figure 9
shows the convergence curves of geometry optimization on different
models. It can be seen that for models with thousands of obtuse
triangles, the optimization typically converges within hundreds of
local-global iterations.

Discussion and limitation. Our method is very general as it is not
specific to a certain type of anisotropic meshes (e.g., PO-based,
CVT-based, ODT-based). Thus it can be applied directly as a post-
processing step with only an isotropic mesh as input. No additional
prior knowledge is required, such as anisotropic metric, remeshing
strategy, etc. The limitation is that the face anisotropy is hard to
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preserve or even evaluate after applying our method. We can eval-
uate the face anisotropy only if we know under what anisotropic
metric the input anisotropic mesh is generated, which is often not
available. This is different from isotropic mesh where the face
isotropy can be easily evaluated based on Euclidean metric. Since
our method only optimizes the general fairness using graph Lapla-
cian, the face anisotropy is slightly worse after removing obtuse
angles (see Table 1), which in turn affects the feature preservation
in highly anisotropic region with lots of obtuse angles initially.

Another limitation is that we cannot explicitly control the number
of vertices on the resultant mesh. This is due to the fact that our
method involves not just local connectivity change such as edge flip,
vertex collapse/insertion, but more global change during connec-
tivity optimization (see Section 3.2.2). Short edges also need to be
collapsed during geometry optimization to avoid nearly degenerated
triangles.

Also, similar to previous works on isotropic meshes [YW16,
HYB∗17,WYL∗19], our method has no hard guarantee for complete
obtuse angle removal. However, with carefully designed connectivity
and geometry optimization, it is empirically effective to eliminate
all obtuse angles (see Table 1).

5. Conclusion and Future Work

In this work, we present a novel anisotropic remeshing method that
can effectively improve the mesh quality by removing all the obtuse
angles. This is based on an efficient connectivity and geometry opti-
mization that better preserves the original mesh structure without
resampling mesh vertices and fully rebuilding the mesh connectivity.
The proposed method is very general and can be used as an efficient
post-processing for anisotropic meshes generated by existing algo-
rithms. We evaluate our method on various models with different
geometry and topology. The results and the comparison with prior
work demonstrate the advantages of our method.

In the future, we would like to extend the current method to handle
models with sharp features (e.g., mechanical parts) by first detecting
the feature vertices and then fixing them during optimization. We are
also interested in further improving mesh quality by involving more
prior knowledge of the input mesh, such as the induced anisotropic
metric. By taking into account such prior knowledge during geome-
try optimization (e.g., using anisotropic surface Laplacian instead
of graph Laplacian), we would better preserve the face anisotropy at
highly anisotropic regions.
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Appendix A:

Given an ellipse E in 2D Euclidean space centered at the origin o,
let H be an affinely regular hexagon inscribed in E (see Figure 11b ).

The hexagon H defines a vector norm (denoted by ||v||H ) in the way
that ||v||H = 1 for any vector v on H, otherwise ||kv||H = |k| · ||v||H
(∀k ∈ R). Then H is called a unit hexagon. The norm ||v||H is
called the hexagonal Minkowski metric, under which the iso-distance
curves from the origin are hexagons. This is different from the
elliptic metric ||v||E = vT Mv (M is a positive definite matrix) with
iso-distance curves as ellipses (see Figure 11a).

(a)

o

(b)

o HE

Figure 11: (a) The iso-distance curves of the elliptic metric from the
origin o. (b) The hexagonal Minkowski metric defined by an affinely
regular hexagon H (black) inscribed in an ellipse E (gray), and its
iso-distance curves (dash black).
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