
SOL-NeRF: Sunlight Modeling for Outdoor Scene Decomposition
and Relighting

Jia-Mu Sun
Beijing Key Laboratory of Mobile Computing and

Pervasive Device, Institute of Computing Technology, CAS
and University of Chinese Academy of Sciences

China
sunjiamu21s@ict.ac.cn

Tong Wu
Beijing Key Laboratory of Mobile Computing and

Pervasive Device, Institute of Computing Technology, CAS
and University of Chinese Academy of Sciences

China
wutong19s@ict.ac.cn

Yong-Liang Yang
Department of Computer Science

University of Bath
United Kingdom

y.yang@cs.bath.ac.uk

Yu-Kun Lai
School of Computer Science and Informatics

Cardiff University
United Kingdom

LaiY4@cardiff.ac.uk

Lin Gao∗
Beijing Key Laboratory of Mobile Computing and

Pervasive Device, Institute of Computing Technology, CAS
and University of Chinese Academy of Sciences

China
gaolin@ict.ac.cn

Change

Change

Normal Reconstruction

Shadow

Albedo

Change

Input Images

Change

Normal Reconstruction

Shadow

Albedo

Figure 1: Given a set of input images of an outdoor scene, our SOL-NeRF pipeline decomposes them into geometry and material
properties, which enables rendering the input scene from a novel viewpoint and relighting it with a different illumination.
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ABSTRACT
Outdoor scenes often involve large-scale geometry and complex un-
known lighting conditions, making it difficult to decompose them
into geometry, reflectance and illumination. Recently researchers
made attempts to decompose outdoor scenes using Neural Radiance
Fields (NeRF) and learning-based lighting and shadow represen-
tations. However, diverse lighting conditions and shadows in out-
door scenes are challenging for learning-based models. Moreover,
existing methods may produce rough geometry and normal recon-
struction and introduce notable shading artifacts when the scene
is rendered under a novel illumination. To solve the above prob-
lems, we propose SOL-NeRF to decompose outdoor scenes with the
help of a hybrid lighting representation and a signed distance field
geometry reconstruction. We use a single Spherical Gaussian (SG)
lobe to approximate the sun lighting, and a first-order Spherical
Harmonic (SH) mixture to resemble the sky lighting. This hybrid
representation is specifically designed for outdoor settings, and
compactly models the outdoor lighting, ensuring robustness and
efficiency. The shadow of the direct sun lighting can be obtained by
casting the ray against the mesh extracted from the signed distance
field, and the remaining shadow can be approximated by Ambient
Occlusion (AO). Additionally, sun lighting color prior and a re-
laxed Manhattan-world assumption can be further applied to boost
decomposition and relighting performance. When changing the
lighting condition, our method can produce consistent relighting
results with correct shadow effects. Experiments conducted on our
hybrid lighting scheme and the entire decomposition pipeline show
that our method achieves better reconstruction, decomposition,
and relighting performance compared to previous methods both
quantitatively and qualitatively.

CCS CONCEPTS
• Computing methodologies → Image-based rendering.
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neural radiance fields, inverse rendering, outdoor scene reconstruc-
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1 INTRODUCTION
Neural Radiance Fields (NeRF) [Mildenhall et al. 2020] that are
learnable in the differentiable rendering process have become in-
creasingly important for inverse rendering tasks. Several pioneering
works [Oechsle et al. 2021; Wang et al. 2021; Yariv et al. 2021] learn
to reconstruct the geometry of the input scene with volume ren-
dering based on NeRF and implicit surface representations. While
achieving good-quality geometry and appearance on relatively
small scenes under a fixed lighting condition, their performance
drops on larger scenes with varying illuminations, and none of them

can relight the input scene. This is because they learn the appear-
ance using a single MLP (Multi-layer Perceptron) that entangles
material, lighting and shadow.

To reconstruct outdoor scenes with varying lighting conditions,
several methods have been proposed. NeRF-W [Martin-Brualla
et al. 2021] splits the original NeRF network into two: a static one
and a transient one, where the latter is controlled by a per-frame
appearance embedding. This strategy successfully peels off the
lighting effect. However, it is still an implicit illumination repre-
sentation, rather than an explicit decomposition of material and
lighting. Therefore, one can only relight the scene by interpolating
the latent codes representing two lighting conditions. NeuralRecon-
W [Sun et al. 2022] also uses latent embeddings to model different
appearances across images while focusing on geometry reconstruc-
tion. By utilizing a surface-based sampling strategy, it can efficiently
constrain the samples to be around the surface, yielding satisfactory
reconstruction results. Nonetheless, NeuralRecon-W is incapable
of relighting also due to its implicit lighting representation.

Unlike the above methods, NeRF-OSR [Rudnev et al. 2022] ex-
plicitly decomposes the lighting and material of outdoor scenes. It
extends the original NeRF by modeling the lighting with a second-
order Spherical Harmonics (SH) mixture. The material is predicted
using an albedo network, while shadows are estimated by a shadow
network that takes the SH coefficients as input. The SH lighting
for an image is predicted by a learnable embedding for each image.
NeRF-OSR shows promising decomposition and relighting results,
but the learned shadow network can easily overfit the input images.
This is because it merely outputs a scalar value (between 0 and 1)
that suppresses the non-shadowed results in the image space, rather
than explicitly computing shadow effects from lighting and geome-
try. Very recently, FEGR [Wang et al. 2023] proposed to use hash
grid encoding [Müller et al. 2022] to model scene properties while
utilizing explicit ray tracing to obtain high-order effects such as
shadows. It models lighting with a lighting prediction network that
predicts the lighting intensity from a specific direction. However,
the lighting network may predict an inaccurate illumination as it
learns a single lighting model which mixes high-intensity sunlight
and low-intensity sky light. As a result, the learned sunlight may
have an irregular shape and the intensity distribution of the sky
can be less accurate.

Aiming at high-quality scene decomposition and relighting, we
propose a novel method called SOL-NeRF (Sunlight Modeling for
Outdoor Scene Decomposition and ReLighting) with a hybrid
lighting representation enhanced by geometry and lighting pri-
ors (see Fig. 1). To address the complication of outdoor lighting
with varying intensity distributions, we use a hybrid representa-
tion based on Spherical Gaussian (SG) and Spherical Harmonics
(SH) to model sunlight and sky light respectively. The proposed
hybrid representation also allows more accurate and reliable estima-
tion of shadow effects, including explicit ray-tracing using SG, and
learned Ambient Occlusion (AO) using SH. To enable quality and ef-
ficient geometry reconstruction, we employ the octree-accelerated
sampling strategy [Sun et al. 2022], and transform signed distance
values to opacity values for volume rendering using the formu-
lation in [Wang et al. 2021]. The learned Signed Distance Field
(SDF) also provides necessary inside-outside information for the
shadow calculation. Moreover, we utilize essential priors to resolve
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ambiguities and enhance the performance of scene decomposition.
More specifically, we analytically link the color of sunlight with the
elevation of the sun in the sky dome, making the learned lighting
more accurate. A relaxed Manhattan world assumption adapted
from [Furukawa et al. 2009] is used to improve the surface normal
distribution, thus improving the reconstructed scene geometry.

Overall, our contribution can be summarized as follows:

• We propose SOL-NeRF, a pipeline that decomposes outdoor
scenes into geometry, reflectance and lighting. It can effi-
ciently extract high-quality geometry and reflectance from a
set of images of outdoor scenes under varying illuminations.

• We introduce a novel hybrid lighting representation for sky-
lights in the daytime composed of both Spherical Gaussian
and Spherical Harmonics. This representation can approxi-
mate shadows with a low computation overhead, which is
essential for inverse rendering applications.

• Experiments show that the proposed lighting representation
can efficiently model various lighting conditions and built
upon this lighting representation, SOL-NeRF can reconstruct
and relight outdoor scenes more faithfully compared with
existing methods.

2 RELATEDWORK
2.1 Neural Inverse Rendering.
Inverse rendering [Ramamoorthi and Hanrahan 2001b; Sato et al.
1997] is a fundamental problem in computer graphics. It aims to
decompose the geometry, material, and lighting from observed im-
ages. Early works [Gao et al. 2020; Yu et al. 2020] often involve
intrinsic images or geometry proxies to decompose a scene. Re-
cently, with the emergence of the implicit representation and neural
radiance fields (NeRF), a number of works proposed to learn the un-
derlying geometry, material and lighting from given observations.
NeRD [Boss et al. 2021a] is the pioneering work that decomposes
material and geometry with given lighting conditions. It takes direct
lighting and one-bounce indirect lighting into consideration and
models the visibility with a neural network. Later, PhySG [Zhang
et al. 2021a] works under an unknown lighting condition and uses
signed distance fields (SDF) and Spherical Gaussian (SG) functions
as geometry and lighting representation respectively but assumes
the whole scene shares the same roughness and specular compo-
nents. Based on PhySG, InvRender [Zhang et al. 2022] introduces
another set of SG functions to model indirect illumination. Boss
et al. [2021a] also use SG as its representation and adopt a two-
stage training strategy by first optimizing a sampling network and
then a decomposition network. To better predict material, Neural-
PIL [Boss et al. 2021b] builds a smooth material autoencoder to
predict the material parameters. NeRFactor [Zhang et al. 2021b]
also trains a learned BRDF autoencoder and further separates shad-
ows from it with a visibility network. NeROIC [Kuang et al. 2022]
separates the static appearance and the transient appearance with
two branches similar to NeRF-W [Martin-Brualla et al. 2021] and
uses Spherical Harmonic (SH) functions to approximate lighting.
To model high-frequency lighting beyond the capability of SG and
SH, NvDiffRec [Munkberg et al. 2022] and NvDiffRecMC [Hassel-
gren et al. 2022] propose to model it with a large environment

image and use DMTet [Shen et al. 2021] as its geometry repre-
sentation. These methods mainly focus on decomposing different
components from a scene with a few objects under synthetic or real
illumination, and only a small number of methods target outdoor
scenes. NeRF-OSR [Rudnev et al. 2022] is the first work that at-
tempts decomposition and relighting on outdoor scenes with NeRF.
NeuLighting [Li et al. 2022a] directly predicts the scene properties
from latent codes extracted from the input images. FEGR [Wang
et al. 2023] further improves the decomposition quality by calculat-
ing ray intersections with the explicit surface extracted from an
SDF network.

2.2 Scene-Level Reconstruction with Neural
Rendering.

With the popularity of implicit representations [Chen and Zhang
2019; Mescheder et al. 2019; Park et al. 2019] and neural surface ren-
dering [Thies et al. 2019; Yariv et al. 2020], a few methods [Guo et al.
2022; Sun et al. 2021] start to work on scene-level reconstruction
by optimizing the underlying implicit geometric representation
and the appearance network. Later, neural volumetric rendering
becomes mainstream and several works build the relationship be-
tween implicit representations and volume rendering. NeuS [Wang
et al. 2021] and VOLSDF [Yariv et al. 2021] transform signed distance
values to density values in volume rendering. UNISURF [Oechsle
et al. 2021] replaces alpha values in volume rendering with occu-
pancy values. MonoSDF [Yu et al. 2022] and NeuRIS [Wang et al.
2022] utilize the normal prior learned from a 2D normal estima-
tion network to guide the geometry reconstruction. Apart from
these methods focusing on objects and indoor scenes, NeuralRecon-
W [Sun et al. 2022] works on outdoor scenes and improves the
sampling strategy with an octree with the point cloud produced
by Structure-from-Motion (SfM) methods [Schönberger and Frahm
2016; Schönberger et al. 2016]. FEGR [Wang et al. 2023] also utilizes
NeuS’s formulation and accelerates the reconstruction process with
a multi-resolution hash table [Müller et al. 2022].

2.3 Outdoor Lighting Estimation.
For outdoor lighting estimation, there are two commonly used
settings: single-view lighting estimation and multi-view lighting es-
timation. Given a single view observation, previous methods [Hold-
Geoffroy et al. 2019, 2017; Song and Funkhouser 2019; Zhang et al.
2019; Zhu et al. 2021] propose feed-foward networks to predict the
sun’s location and the sky intensity. However, single-view lighting
estimation is extremely ill-posed, which makes it hard to predict
an accurate sun location and sky intensity. Under the multi-view
setting, Duchene et al. [2015] use a progressive method to predict
both the scene material and lighting, while Philip et al. [2019] di-
rectly use a multi-view dataset and target lighting to relighting
outdoor scenes. NeRF-W [Martin-Brualla et al. 2021] models the
lighting implicitly with a learnable feature vector for each input
image. NeRF-OSR [Rudnev et al. 2022] explicitly approximates the
outdoor lighting with SH functions. FEGR [Wang et al. 2023] in-
stead models the lighting intensity with a neural network from
a specific direction. However, this lighting formulation mixes the
high-intensity sunlight and the low-intensity sky light, and thus
may predict the sun with an irregular shape and the sky with an
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Figure 2: The overview of SOL-NeRF pipeline. Given a set of images under multiple different lighting conditions, we model the
scene’s geometry with a signed distance field (SDF) and apply an adaptive sampling strategy in the neural volume rendering
process. To decompose geometry, material, shadow and lighting, we predict the diffuse albedo 𝑎 with an MLP network and the
normal is derived by the gradient of the SDF network. Our lighting is composed of a Spherical Gaussian (SG) function and the
first-order Spherical Harmonic (SH) functions. The SG function is responsible for high-intensity lighting like the sun while the
SH functions are designed to represent relatively low-intensity lighting like the sky light. We consider both the shadow cast by
the directional SG light and the ambient occlusion. To enhance decomposition quality, we introduce priors for the sunlight
color and geometry. Overall, SOL-NeRF enables realistic reconstruction and relighting the input scene under a novel lighting
condition.

inaccurate intensity distribution. Different from NeRF-OSR and
FEGR, we separately model the high-intensity sunlight and the
low-intensity sky light with an SG function and a first-order SH
respectively to reduce the learning difficulty.

3 METHOD
We propose SOL-NeRF, an implicit scene representation based
method that decomposes scene properties from multi-view images.
Our method is briefly described with illustrations in Fig. 2. The rest
of the section elaborates on the key components and is organized as
follows. Firstly, we introduce some of the preliminaries, including
the formulation of neural rendering and NeuS [Wang et al. 2021],
the rendering equation, and the sampling strategy adopted from
NeuralRecon-W [Sun et al. 2022] (Sec. 3.1). Secondly, we elaborate
on our novel hybrid lighting representation and present the render-
ing method accordingly (Sec. 3.2). Thirdly, we discuss how to cast
shadows under our hybrid lighting representation (Sec. 3.3). Finally,
we introduce additional priors that improve the decomposition and
relighting performances of our method (Sec. 3.4).

3.1 Preliminaries
3.1.1 Neural Rendering based on an Implicit Representation. NeRF
uses a density field 𝜎 to model geometry. At rendering time, the ren-
derer generates a ray per pixel and samples with distances 𝑡𝑖 along

the ray. The final color of the pixel is obtained through discrete
integration𝐶 =

∑𝑁
𝑖 𝑤𝑖c𝑖 , where 𝑁 is the number of sampled points

along a ray and 𝑤𝑖 = exp(∑𝑗<𝑖 𝜎𝑖 (𝑡 𝑗+1 ≻ 𝑡 𝑗 )) (1 ≻ exp(≻𝜎𝑖 (𝑡 𝑗+1 ≻
𝑡 𝑗 ))). However, the density field cannot accurately express the sur-
face geometry. To tackle this problem, NeuS [Wang et al. 2021]
models geometry with a signed distance field (SDF) function 𝑓𝑠𝑑 𝑓
and transforms the signed distance value to the density value with

𝜎 (𝑡) = max
(
≻

𝑑Φ𝑠
𝑑𝑡

(𝑓𝑠𝑑 𝑓 (𝑥 (𝑡 ) )
Φ𝑠 (𝑓𝑠𝑑 𝑓 (𝑥 (𝑡 ) ) , 0

)
, where Φs (x) = (1 + e≻sx )≻1 and

s is a trainable deviation parameter.

3.1.2 The rendering equation. Rather than directly using the output
of the color network as in NeRF, we perform shading based on the
rendering equation [Kajiya 1986] for every sample point x𝑖 . We
omit the specular lobe of the BRDF, and only preserve the diffuse
one with direct lighting to calculate the color of the sample point:

c𝑖 =
1
𝜋
a𝑖
∫
S
𝑉 (x𝑖 ,𝝎𝒋)𝐿𝑖𝑛 (x𝑖 ,𝝎𝒋)max(N̂𝑖 · 𝝎 𝑗 , 0)𝑑𝝎𝒋 (1)

where a𝑖 and N̂𝑖 denote albedo and surface normal for point x𝑖 ,
𝑉 (x𝑖 ,𝝎𝒋) denotes visibility at x𝑖 from direction 𝝎𝒋 , 𝐿𝑖𝑛 (x𝑖 ,𝝎𝒋) de-
notes incoming radiance. 𝐿𝑖𝑛 is approximated by the hybrid lighting
of SG and SH (Sec. 3.2).
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Figure 3: The calculation of shadow under the proposed hybrid lighting. The final shadow consists of both the SG shadow and
the shadow caused by ambient occlusion. Specifically, we calculate the SG shadow by casting the SG lighting direction to the
extracted mesh. The ambient occlusion value of a surface point p𝑟 is determined by the ratio of points outside the surface and
the total sample points {p′

𝑟,𝑘
} in a hemisphere centered at p𝑟 . Note that ambient occlusion is calculated by directly querying the

SDF, while traced shadow is based on extracted mesh.

3.1.3 Sampling Strategy. As an outdoor scene is often at a large
scale, there are usually plenty of empty spaces without any geomet-
ric object in the scene, making the standard importance sampling-
based rendering method struggle to infer the real geometry. Hence,
we adopt the sampling strategy proposed by NeuralRecon-W [Sun
et al. 2022], which builds an octree based on the point cloud gen-
erated by SfM, and stores the SDF values into the octree. The SDF
values can efficiently guide the sampling process, boosting both
the training speed and geometry quality.

3.2 Hybrid Lighting Representation
Our method is dedicated to outdoor scenes, which are mostly cap-
tured during cloudy or sunny daytime. Hence we propose a lighting
representation specially optimized to model daylight, which can
also handle scenes without direct sunlight as a degenerate case.
The upper part of Fig. 2 illustrates our lighting formulation. The
basic idea is to separate the daylight into two components: 1) direct
sunlight, which is a highly concentrated and bright ‘local’ light
source. 2) sky light, which is a more uniformly distributed ‘global’
light source on the sky dome. Actually, both components are effects
of sunshine. The sky light is simply the scattered sunlight, the color
of which can be calculated by Reyleigh and Mie Scattering [Tyndall
1869].

However, directly calculating the whole sky and its lighting effect
at every sample point using Reyleigh and Mie Scattering equations
is expensive. Instead, we model the two components based on two
lighting representations: 1) a Spherical Gaussian (SG) illumination
model to represent direct sunlight, and 2) a Spherical Harmonics
(SH) illumination model to represent sky light.

3.2.1 The Formulation and Rendering of SG and SH. Spherical Gaus-
sians are Gaussian functions defined on spheres: 𝑆𝐺 (v; 𝝁, _, l) =

l𝑒_ (𝝁 ·v≻1) , where v is the function input representing the light
direction, 𝝁 and _ control the center and deviation, and l controls
the peak value. We use 7 learnable parameters (3 for peak inten-
sity 𝒗, 3 for direction 𝝁, and 1 for deviation _) to represent the
SG lobe and employ the same rendering equation as [Wang et al.
2009]. As for Spherical Harmonics [Ramamoorthi and Hanrahan
2001a], it uses a set of basis functions 𝑌𝑚

𝑙
(v), where ≻𝑙 ≤ 𝑚 ≤ 𝑙 to

decompose a global lighting distribution on a sphere. Here we use
the first-order SH mixture (𝑙 = 0, 1), which reduces the parameters
needed to represent the sky light, and is beneficial to learning the
near-uniform sky light. The first-order SH has 4 lobes, meaning we
need 12 parameters for SH.

3.2.2 Motivation of the Hybrid Representation. The separation
modeling of sunlight and sky light using SG and SH has sev-
eral advantages: 1) The rendering with SG and SH illumination is
memory-efficient and fast because only 7 SG and 12 SH parameters
are required and the shading calculation is close-form. 2) It sepa-
rates the high-intensity sunlight and the relatively low-intensity
sky light to reduce the learning difficulty of the complex outdoor
illumination. 3) Casting shadows under this representation is ef-
ficient since only one ray-mesh intersection test is needed (see
Sec. 3.3). The explicit shadow calculation can produce more realis-
tic relighting results compared with the implicitly learned shadow
in NeRF-OSR [Rudnev et al. 2022] that may overfit input images
(see Sec. 4).

3.3 Shadow Calculation
As a direct effect of the interaction between light and geometry,
shadow is largely influenced by the lighting. We calculate the
shadow according to the SG and SH components of the lighting,
respectively. We show the shadow calculation process in Fig. 3.

3.3.1 Ray Tracing for SG Shadow. The proposal of SG illumination
is to simulate direct sunlight. The sunlight is nearly a directional
light source given its highly concentrated nature. Consequently,
the shadow cast by the sunlight can be simply obtained by tracing
the light ray reversely (from the shading point along the reversed
SG direction). To accelerate the ray tracing, we construct an octree
based on the reconstructed geometry by 𝑓𝑠𝑑 𝑓 .

3.3.2 Learned Ambient Occlusion for SH Shadow. The SH illumi-
nation is utilized to approximate the near-uniform sky light. If
we further assume the sky light is uniformly distributed, what we
get is exactly the so-called ‘ambient light’ in the real-time render-
ing context. Thus, we adapt the Screen Space Ambient Occlusion
(SSAO) [Mittring 2007; Shanmugam and Arikan 2007] techniques



SA Conference Papers ’23, December 12–15, 2023, Sydney, NSW, Australia Jia-Mu Sun, Tong Wu, Yong-Liang Yang, Yu-Kun Lai, and Lin Gao

to our SDF-based geometry representation. For every ray, we get
the surface point p𝑟 = o𝑟 + 𝑡𝑟d𝑟 with the corresponding normal N𝑟 ,
where o𝑟 and d𝑟 denote the origin and direction of the 𝑟 -th ray, and
𝑡𝑟 =

∑𝑁
𝑖=1𝑤𝑖𝑡𝑖 denotes the depth estimated by volume rendering.

We sample𝑀 points p′
𝑟,1, p

′
𝑟,2, ..., p

′
𝑟,𝑀

within the hemisphere cen-
tered at p𝑟 and with upper direction N𝑟 . The SDF value of p′𝑟,𝑘 is
queried, and the final ambient occlusion shadow is calculated by:

𝐴𝑂 (p𝑟 ) =
1
𝑀

𝑀∑︁
𝑘=1
I(𝑓 𝑠𝑑 𝑓 (p′𝑟,𝑘 ) > 0), (2)

where I(∗) is an indicator function, and 𝑓 𝑠𝑑 𝑓 (∗) is the learned
SDF function. However, the sampled ambient occlusion 𝐴𝑂 (·) will
cause noises since it is an approximate function based on random
sampling. So we further define an MLP 𝑓𝑎𝑜 as a smooth, learnable
model to better estimate ambient occlusion, which is optimized
during end-to-end training with data loss 𝐿𝑎𝑜 and regularization
loss 𝐿𝑎𝑜𝑟 :

𝐿𝑎𝑜 =

����� 𝑁∑︁
𝑖=1

𝑤𝑖 𝑓𝑎𝑜 (x𝑖 ) ≻𝐴𝑂 (p𝑟 )
����� 𝐿𝑎𝑜𝑟 =

����� 𝑁∑︁
𝑖=1

𝑤𝑖 𝑓𝑎𝑜 (x𝑖 ) ≻ 1

����� (3)

Experiments in Fig. 11 show the learned 𝑓𝑎𝑜 is smoother than the
original sampled 𝐴𝑂 (·) and can boost reconstruction results.

Now we have introduced both the lighting representation and
the shadow calculation. Eq. 1 can be written as follows:

c𝑖 =
1
𝜋
a𝑖
∫
S
𝑉𝑡 (x𝑖 ,𝝎)𝑆𝐺 (𝝎; 𝝁, _, l)max(N̂𝑖 · 𝝎, 0)𝑑𝝎

+ 1
𝜋
a𝑖 𝑓𝑎𝑜 (x𝑖 )

∫
S

∑︁
𝑙,𝑚

𝑦𝑚
𝑙
𝑌𝑚
𝑙
(𝝎)max(N̂𝑖 · 𝝎, 0)𝑑𝝎,

(4)

where 𝑉𝑡 (x𝑖 ,𝝎) is the intersection test result between the recon-
structed mesh and the ray x𝑖 + 𝑡𝝎. It equals 0 when the ray-mesh
intersection exists.𝑦𝑚

𝑙
is the mixture weight of spherical harmonics

basis functions and l is the color of the sun.

3.4 Priors
In addition to the proposed lighting representation, we also ex-
ploit two priors to further improve the performance of SOL-NeRF,
including the sunlight color prior and relaxed Manhattan world
geometry prior.

3.4.1 Sunlight Color Prior. The proposed hybrid lighting repre-
sentation is under-constrained regarding the sunlight color. In the
real world, the color of the sunlight is closely related to sun ele-
vation angle and altitude (see Fig. 4). Various models have been
proposed to model the sunlight and sky color with respect to these
parameters [Hosek and Wilkie 2012; Nishita et al. 1993; Preetham
et al. 1999]. We adopt the model proposed in [Nishita et al. 1993],
since it is purely based on physical calculations. However, if we
calculate the color at rendering time, the computation overhead
makes training impractical. We choose to fit the R,G,B channels of
the light with an analytical function a𝑠𝑢𝑛 = 𝑓𝑠𝑢𝑛 (\ ), where 𝑓𝑠𝑢𝑛 is
a piecewise polynomial function and \ is the elevation angle of the
sun. However, this model only considers the clear sky with a certain
density of air and water droplets. In practice, there are many fac-
tors (e.g., location-dependent air and water droplets density, cloud
and mist, and errors of the imaging system) that make this model

Sun Elevation

Optical Depth

RGB Value

θ
θ

Figure 4: The sunlight color is related to the sun elevation \ .
According to the learned sun elevation \ , atmosphere thick-
ness, and air density, the optical depth is calculated. Then
the color of the sunlight that reaches the surface is obtained
using wavelength-dependent Reyleigh and Mie Scattering
laws [Nishita et al. 1993; Tyndall 1869]. Using this method
we can associate every \ with a color. This function is approx-
imated using a polynomial that can be evaluated efficiently
in training time.

inaccurate. To make up for this, we modify the final color of the
sun SG to l = c ⊙ a𝑠𝑢𝑛 + b, where c, b are learnable parameters,
and are initialized to 1 and 0 respectively. For more details of the
function 𝑓𝑠𝑢𝑛 , please refer to the supplementary material.

3.4.2 Relaxed Manhattan World Prior. Man-made buildings often
have surfaces aligned with three orthogonal directions. This as-
sumption is called the Manhattan world assumption [Furukawa
et al. 2009] and is widely used in 3D reconstruction methods. Since
the target of our outdoor scene is often buildings, we consider
applying this assumption to our pipeline.

However, many non-Mahattan-style buildings do not fully obey
this assumption. So we instead apply a relaxed version of the as-
sumption: we assume the scene has one upright direction (ground
normal), and most surface normals are either parallel or perpendic-
ular to this direction. This is natural as a building usually sits on
the ground, and its facade normal is naturally perpendicular to the
ground normal. We formulate this prior as a loss 𝐿𝑚𝑎𝑛 :

𝐿𝑚𝑎𝑛 (N̂) = min( |N̂ · U|, | |N̂ × U| |2), (5)
where N̂ and U are normalized vectors of normal and upright di-
rection.

After introducing all the components, we formulate the overall
loss function of our pipeline as follows:

𝐿 = 𝐿𝑐𝑜𝑙𝑜𝑟 + _1𝐿𝑟𝑒𝑔 + _2𝐿𝑚𝑎𝑠𝑘 + _3𝐿𝑎𝑜 + _4𝐿𝑎𝑜𝑟 + _5𝐿𝑚𝑎𝑛 (6)
where the color loss 𝐿𝑐𝑜𝑙𝑜𝑟 minimizes the difference between ren-
dered color and the ground truth pixel color and is defined as:

𝐿𝑐𝑜𝑙𝑜𝑟 =
1
𝑅

𝑅∑︁
𝑟=1

| |𝐶 (𝑟 ) ≻𝐶𝑡 (𝑟 ) | |1 (7)

where 𝑅 is the number of sampled rays in a training batch. 𝐶 (𝑟 )
and𝐶𝑡 (𝑟 ) are the rendered pixel color and ground truth pixel color
for the 𝑟 th ray. 𝐿𝑟𝑒𝑔 = |∥∇𝑓𝑠𝑑 𝑓 ∥2 ≻ 1| is the eikonal loss to allow
smooth surface reconstruction. The foreground mask loss 𝐿𝑚𝑎𝑠𝑘

is the same as that in NeuS [Wang et al. 2021] and NeuralRecon-
W [Sun et al. 2022]. For detailed hyperparameter settings, please
refer to the supplementary material.
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Table 1: Quantitative comparison of reconstruction results
using SSIM, PSNR and MSE metrics on the synthetic dataset.

Methods
Rendered Albedo Normal

PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ MAE(◦) ↓
NeRF-OSR 22.748 0.808 0.00903 20.157 0.825 0.0142 26.211

Ours 23.437 0.863 0.00610 24.891 0.827 0.00579 16.334

4 RESULTS AND EVALUATIONS
4.1 Datasets and Metrics
We evaluate on two datasets: Sites 1, 2, 3 of the OSR dataset from
NeRF-OSR [Rudnev et al. 2022], and a synthetic dataset (denoted
synthetic) with three scenes (Syn 1, 2, 3) collected from Blendswap.com.
We evaluate the novel view synthesis results on the synthesis
dataset and relighting results on both datasets. The ablation stud-
ies are conducted on the synthetic dataset. For the scene decom-
position (including novel view synthesis) and relighting quality,
we compare the PSNR, SSIM [Wang et al. 2004], and MSE (Mean
Squared Error) to evaluate the similarity of the novel view ren-
dering with the ground truth image and albedo (the ground truth
albedo is only available in our synthetic dataset). For the geometry,
we compare MAE (Mean Absolute Error) between the rendered and
ground truth normals. We additionally evaluate the proposed hy-
brid lighting representation with eight novel HDR (High Dynamic
Range) environment maps collected from the Blender software and
hdrmaps.com.

4.2 Scene Decomposition
In Fig. 6 we include decomposition results for one scene (Site 3)
from the OSR dataset and two scenes (Syn 1, 3) from the synthetic
dataset. Our method can recover a better geometry as indicated
by the normal quality. On the synthetic scenes, our decomposed
albedos are less shadow-contaminated and more accurate in terms
of color, while the ones produced by NeRF-OSR have shadow left-
overs and appear reddish. These can be seen more clearly by the
quantitative evaluation shown in Table 1. Our method has a similar
performance to NeRF-OSR for novel view synthesis as a compound
task under known lighting, while it outperforms NeRF-OSR in the
decomposition results of albedo and normal, benefiting also the
scene relighting as presented below.

4.3 Scene Relighting
In Fig. 9, we show relighting results for two scenes (Sites 1, 2) of the
OSR dataset and one scene (Syn 2) of the synthetic dataset. For each
scene, the ground truth image and two relighting results of that view
are displayed. The calculated or predicted shadow is shown along
with the relighting results. From Fig. 9 we can see the predicted
shadow of NeRF-OSR does not effectively reflect the change of
the lighting condition, but look more like a ‘monochrome’ version
of the albedo. The reason behind this is the shadow prediction
network only sees 200 to 300 lighting conditions, causing it to
overfit these lighting settings. And the inaccurate and noisy normals
produced by NeRF-OSR also negatively affect the relighting results,
making the geometry surface look bumpy. Our pipeline solves these
problems by utilizing the hybrid SG and SH lighting and its shadow

Table 2: Quantitative comparison of relighting results on
real NeRF-OSR dataset and the synthetic dataset using SSIM,
PSNR and LPIPS metrics. Results are averaged over ten dif-
ferent viewpoints with five different environment maps.

Methods
OSR Synthetic

PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓
NeRF-OSR 17.314 0.576 0.025 21.776 0.689 0.017

Ours 19.001 0.683 0.0189 25.278 0.854 0.005

calculation techniques described in Sec. 3. The measures reported in
Table 2 show the performance gain of our method over NeRF-OSR.

4.4 Hybrid Lighting Evaluation
Since the SG and SH hybrid lighting representation is newly pro-
posed, we need to evaluate how well it can approximate outdoor
lighting. For the lighting evaluation experiment, we collected six
equirectangular environment maps, representing different condi-
tions of sky lighting. For each environment map, we optimize
our hybrid lighting representation to minimize the error between
the ground truth map and the rendered map of our lighting. We
then put the ground truth lighting and our optimized lighting into
Blender [Community 2023], using the Cycles engine to get the ren-
dered results of a diffuse scene under these two lighting settings.
The SH lighting is directly rendered into an environment map, and
the SG lighting is implemented using an explicit ‘Sun’ light source.
In average, the PSNR between the rendered results of our method
and ground truth reaches 32.829. We show the results of this exper-
iment in Fig. 10. It can be seen that the SG and SH hybrid lighting
can effectively approximate various environment maps with minor
errors in rendering results both visually and quantitatively.

4.5 Ablation Studies
In this subsection, we ablate several important design choices in
our framework.

4.5.1 Sunlight Prior. The sunlight prior connects the elevation and
color of the sun, which reduces the degree of freedom of the learn-
able lighting and its learning difficulty. We show the ablation results
in the first two rows of Fig. 5 and Table 3. The absence of this prior
can cause inaccurate albedo decomposition since we do not limit
the light color. This effect is observed in other methods that model
the sunlight without any constraints, like NeRF-OSR [Rudnev et al.
2022] and FEGR [Wang et al. 2023]. Moreover, the training process
can be sensitive to the initial values of SG and SH parameters and
may fail to reconstruct the input scene (the second row of Fig. 5).

4.5.2 RelaxedManhattan-World Assumption. The relaxedManhattan-
world assumption regularizes the learned geometry and helps to
reduce the bumpy surface artifact caused by the positional en-
coding. Qualitative comparisons between without and with the
Manhattan-world assumption are shown in the third row of Fig. 5.
It can be seen that the reconstructed normal is smoother when
the Manhattan-world assumption is applied while the learned nor-
mal may be bumpy without this regularization. We also report the
MAE between reconstructed normals and the ground truth normals
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Figure 5: Qualitative comparison of decomposition results
between the full pipeline (Full) and the baselines including
without sunlight prior (w/o S.P.), without Manhattan-world
prior (w/oM.P.), and predicting shadowwith anMLP network
implicitly (Implicit S.).

Table 3: Quantitative comparison of reconstruction results
between the baseline (w/o S.P.) without sunlight color prior
and our method (w/ S.P.) using SSIM, PSNR, and MSE metrics
on Syn 3 scene.

Methods
Rendered Albedo Normal

PSNR ↑ SSIM ↑ MSE ↓ PSNR ↑ SSIM ↑ MSE ↓ MAE(◦) ↓
w/o S.P. 24.241 0.879 0.00377 22.041 0.904 0.00625 19.364
w/ S.P. 25.532 0.887 0.00279 27.905 0.941 0.00162 16.205

in Table 4, which indicates this assumption can enhance normal
reconstruction.

4.5.3 Shadow Calculation Strategy. As mentioned in Sec. 3.3, the
shadow is approximated by explicitly casting rays to the mesh
extracted by the SDF network and the ambient occlusion. Another
possible shadow calculation strategy is to predict it from lighting
conditions similar to NeRF-OSR. Specifically, we set up another
MLP network to predict shadows from the SG and SH parameters
in our framework. We compare this strategy (Implicit. S) with our
method (Explicit S.) on the scene decomposition task in the fourth
row of Fig. 5 and the relighting task in Fig. 8. It can be seen that
the implicit shadow strategy fails to correctly decompose shadow
and render the input scene under novel lighting conditions.

4.5.4 Ambient Occlusion Calculation Strategy. As mentioned in
Sec. 3.3, we use an MLP network 𝑓𝑎𝑜 to predict ambient occlusion

Table 4: Quantitative comparison of reconstructed normals
by our method (w/ M.P.) and the baseline (w/o M.P.) without
the Manhattan-world assumption using the MAE metric on
Syn 3 scene.

w/o M.P. w/ M.P.
Normal MAE (◦)↓ 19.564 16.205

and encourage it to be consistent with the sampled ambient oc-
clusion in Eqn. 2. Here we ablate these two strategies of ambient
occlusion calculation in Fig. 11. It shows that directly calculating
ambient occlusion can cause noises in rendered results since it is
computationally expensive to sample a lot of points around a single
sample point while the predicted ambient occlusion by our network
is smooth and noise-free.

5 CONCLUSION
In this paper, we propose SOL-NeRF for outdoor scene decompo-
sition and relighting based on neural radiance fields. Specifically,
we use a signed distance field as our geometry representation. In-
stead of modeling the sky as a whole like previous methods, we
separate the learning of the sunlight and the sky light and intro-
duce a hybrid sunlight representation where the sun is modeled
as a Spherical Gaussian function and the sky is approximated by
first-order Spherical Harmonics. Based on the proposed geometry
and lighting representation, the shadow can be approximated by
casting rays to the mesh extracted from the signed distance field
and learned ambient occlusion. Our method also benefits from the
relaxed Manhattan-world geometry prior and sunlight color prior.
These priors reduce the learning difficulty of the ill-posed inverse
rendering problem and stabilize the training process. Nevertheless,
our method still has the following limitations: Firstly, our method
works better on diffuse scenes since we do not take specular reflec-
tion into account. Decomposition results can be less faithful when
specular reflection exists as shown in Fig. 7. Secondly, our lighting
representation is based on the environment map that does not han-
dle emitters like streetlights. For future directions, we would like to
decompose more complicated lighting effects like specular reflec-
tion and emitters from the input scene similar to inverse rendering
methods like [Li et al. 2022b; Wu et al. 2023; Zhu et al. 2023].
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Figure 6: Decomposition results of NeRF-OSR and our method. For each scene, we show different decomposed components
(normal, albedo and shadow) and the reconstructed image.

(a) Input (b) Albedo (c) Normal (d) Shadow (e) Recon.

Figure 7: Failure case: our method is incapable of decom-
posing the scene correctly when strong specular reflections
exist.

(a) Implicit S. (b) Explicit S. (c) Implicit S. (d) Explicit S.

Figure 8: Qualitative comparisons of relighting results be-
tween our explicit shadow calculation (Explicit S.) and the
baseline (Implicit S.) using an implicit MLP network to pre-
dict shadows with two novel lighting conditions.
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Figure 9: Relighting results of NeRF-OSR and our method. For each input scene, we relight it with two different lighting
conditions and show rendered images and shadows.

(a) Input (b) Fitted (c) Input (d) Fitted (e) Input (f) Fitted

Figure 10: We use our hybrid lighting representation to fit six
environment maps. In each pair, we compare the rendered
images under the ground truth environment map and the fit-
ted environmentmap. The average PSNR between the images
pairs is 32.829. The per-image PSNRs are reported as follows:
49.316, 37.336, 32.507, 32.467, 32.077, and 29.758. When cal-
culating average, the first sample(49.316) is regarded as an
outlier and omitted.

(a) Sampled A.O. (64 samples) (b) Pred. A.O.

(c) Sampled A.O. with 32, 128, 256, 512 samples

Figure 11: Qualitative comparison of Ambient Occlusion and
reconstruction results between the explicit ambient occlu-
sion calculation baseline (Sampled A.O.) and ourmethod that
uses an MLP network to predict the A.O. (Pred. A.O.). We ad-
ditionally include sampled A.O. with different numbers of
samples for reference. Please zoom in for more details.




