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Abstract

Action recognition has been heavily employed in many
applications such as autonomous vehicles, surveillance,
etc, where its robustness is a primary concern. In this paper,
we examine the robustness of state-of-the-art action recog-
nizers against adversarial attack, which has been rarely in-
vestigated so far. To this end, we propose a new method
to attack action recognizers which rely on the 3D skeletal
motion. Our method involves an innovative perceptual loss
which ensures the imperceptibility of the attack. Empiri-
cal studies demonstrate that our method is effective in both
white-box and black-box scenarios. Its generalizability is
evidenced on a variety of action recognizers and datasets.
Its versatility is shown in different attacking strategies. Its
deceitfulness is proven in extensive perceptual studies. Our
method shows that adversarial attack on 3D skeletal mo-
tions, one type of time-series data, is significantly different
from traditional adversarial attack problems. Its success
raises serious concern on the robustness of action recogniz-
ers and provides insights on potential improvements.

1. Introduction
The research in adversarial attack has proven that deep

learning is vulnerable to certain imperceptible perturbation
on data, leading to security and safety concerns [36]; mean-
while, adversarial attack has been useful in improving the
robustness of classifiers [20]. Starting from object recogni-
tion, the list of target tasks for adversarial attack has been
rapidly expanding, now including face recognition [32],
point clouds [45], 3D meshes [47], etc. While adversar-
ial attack on static data (images, geometries, etc.) has been
well explored, its effectiveness on time-series has only been
attempted under a few settings such as videos [14, 43]. In
this paper, we look into another type of time-series data: 3D
∗https://youtu.be/DeMkN3efp9s
†Corresponding author

skeletal motion, for action recognition tasks.
Skeletal motion has been widely used in action recog-

nition [7]. It can greatly improve the recognition accuracy
by mitigating issues such as lighting, occlusion and posture
ambiguity. In this paper, we show that 3D skeletal motions
are vulnerable to adversarial attack but their vulnerability
is different from other data. The adversarial attack on 3D
skeletal motion faces two unique and related challenges:
low redundancy and perceptual sensitivity. When attacking
images/videos, it is possible to perturb some pixels without
causing too much visual distortion. This largely depends on
the redundancy in the image space [37]. Unlike images,
which have thousands of Degrees of Freedom (DoFs), a
skeletal motion is usually parameterized by fewer than 100
DoFs, i.e. the joints of the skeleton. This not only restricts
the space of possible attacks [37], but also affects the imper-
ceptibility of the adversarial samples: a small perturbation
on a single joint can be easily noticed. Furthermore, coordi-
nated perturbations on multiple joints in only one frame can
hardly work either, because in the temporal domain, simi-
lar constraints apply. Any sparsity-based perturbation (on
single joints or individual frames) will greatly affect the dy-
namics (causing jittering or bone-length violations) and will
be very obvious to an observer. One consequence is that the
perturbation magnitude alone is not anymore a reliable met-
ric to judge the imperceptibility of an attack, as an overall
small perturbation could still break the dynamics. This is
very different from existing attack tasks where the pertur-
bation magnitude can be heavily relied upon.

To systematically investigate the robustness of action
recognizers, we propose a straightforward yet very effec-
tive method, Skeletal Motion Action Recognition Attack
(SMART), based on an optimization framework that explic-
itly considers motion dynamics and skeletal structures. The
optimization finds perturbations by balancing between clas-
sification goals and perceptual distortions, formulated as
classification loss and perceptual loss. Varying the classi-
fication loss leads to different attacking strategies. The new
perceptual loss fully utilizes the dynamics of the motions
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and bone structures. SMART is effective in both white-box
and black-box settings, on several state-of-the-art models,
across a variety of datasets.

Formally, we systematically investigate the vulnerabil-
ity of a wide range of state-of-the-art methods under ad-
versarial attack and identify their weaknesses for potential
improvements. To this end, we propose a new adversarial
attack method with a novel perceptual loss function captur-
ing the perceptual realism and fully exploiting the motion
dynamics. We also provide insights into the role of dynam-
ics in the imperceptibility of the adversarial attack based
on comprehensive perceptual studies, showing that it is not
enough to only constrain the perturbation magnitude, which
differs significantly from widely accepted approaches.

2. Related Work
2.1. Skeleton-based Action Recognition

Action recognition is crucial in many applications,
namely surveillance, human-robot interaction and entertain-
ment. Recent advances in 3D sensing and pose estimation
motivate the use of clean skeleton data to robustly classify
human actions, overcoming the biases in raw RGB videos
due to body occlusion, scattered background, lighting vari-
ation, etc. Unlike conventional approaches that are limited
to handcrafted skeletal features [38, 9, 6], recent methods
taking the advantage of trained features from deep learning
have gained state-of-the-art performance. Based on the rep-
resentation of skeletal data, deep learning based methods
can be classified into three categories, including sequence-
based, image-based, and graph-based methods.

Sequence-based methods represent a skeletal motion as
a chronological sequence of poses, each of which con-
sists of the coordinates of all the joints. Then RNN-
based architecture is employed to perform the classifica-
tion [7, 23, 35, 53]. Image-based methods represent a skele-
tal motion as a pseudo-image, which is a 2D tensor where
one dimension corresponds to time, and the other dimen-
sion stacks all the joints of a single skeleton. Such rep-
resentation enables CNN-based image classification to be
applied to action recognition [24, 16]. Different from the
previous two categories that mainly rely on skeleton ge-
ometry represented by the joint coordinates, graph-based
methods utilize graph representations to naturally consider
the skeleton topology (i.e. joint connectivity) which is en-
coded by bones that connect neighboring joints. Graph
neural networks (GNN) are then used to recognize the ac-
tions [33, 4, 25, 54, 56]. Based on the code released
by the authors, we perform adversarial attacks on the two
most representative categories (i.e. RNN- and GNN-based),
demonstrating the vulnerability of existing methods.

2.2. Adversarial Attacks

Despite their significant successes, deep neural networks
are vulnerable to carefully crafted adversarial attacks as
firstly identified in [36]. Delicately designed neural net-
works with high performance can be easily fooled by unno-
ticeable perturbations on the input data. With the concern
raised, researchers have extensively investigated adversar-
ial attacks on different data types, including 2D images [10,
30, 27, 46, 48], videos [44, 42], 3D shapes [21, 52, 47, 45],
physical objects [18, 1, 8], graphs [5], while little attention
has been paid to 3D skeletal motions.

The adversarial attack in the context of action recogni-
tion is much less explored. Inkawhich et al. [12] perform
adversarial attacks on optical-flow based action classifiers,
which is mainly inspired by image-based attacks and differs
from our work in terms of the input data. The adversarial
attack on skeletal motions has just been attempted recently
[22, 58] (arXiv only). However, they did not investigate the
imperceptibility systematically, which is crucial as shown in
our perceptual studies because imperceptibility is a strong
requirement on adversarial attack. In our work, we demon-
strate better results using a perceptual loss that minimizes
the motion derivative deviation relative to the original skele-
tal motion, thereby preserving the motion dynamics which
are intrinsic to actions. This is crucial in attacking highly
dynamic motions such as running and jumping. We also
perform a perceptual study to systematically validate the
imperceptibility of the perturbed skeletal motions and the
effectiveness of our choice of perceptual loss.

We demonstrate successful attacks on a range of network
architectures, including RNN and GNN based methods, on
three datasets. Finally, we present results of three different
attacking strategies, including the novel objective of plac-
ing the correct action beneath the first n actions in a ranked
classification, for a given n.

3. Methodology
SMART is formulated as an optimization problem,

where the minimizer is an adversarial sample, for a given
motion, that minimizes the perceptual distortion while fool-
ing the target classifier. The optimization has variants con-
structed for three different attacking strategies: Anything-
but Attack, Anything-but-N Attack and Specified Attack.
They are used in white-box and black-box scenarios.

3.1. Optimization for Attack

Given a motion q = {q0, q1, ..., qt}, where qt is the frame
at time t and consists of stacked 3D joint locations, a trained
classifier Φ can predict its class label yq = C(Φ(q)), where
Φ is namely a deep neural network and Φ(q) is the pre-
dicted distribution over class labels. C is usually a softmax
function and yq is the predicted label. We aim to find a per-
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turbed example, q̂, for q, such as yq 6= yq̂ . A common
method is to find the minimal perturbation [49] through
solving a constrained optimization. We start with the C&W
formulation[2]:

min Lp(q, q̂) sub. to C(Φ(q̂)) = c and q̂ ∈ [0, 1]n (1)

where Lp is a distance function and C is a hard constraint
dictating that the predicted class of q̂ (bounded in [0, 1]n)
being c. However, directly solving Eq. 1 is difficult due
to that C is highly non-linear [2]. So it can be relaxed by
moving the hard constraint into the objective:

minimize L = wLc(yq̂, c) + (1− w)Lp(q, q̂) (2)

where Lc is a classification loss and w = 0.4. Lp is nor-
mally the perturbation magnitude [2]. But we use a new
perceptual loss which is explained later. Eq.2 has intuitive
interpretation: there are two forces governing q̂. Lc is the
classification loss (a relaxed C in Eq.1) where we can de-
sign different attacking strategies. Lp is the perceptual loss
which dictates that q̂ should be visually indistinguishable
from q. To optimize for q̂, we have only one assumption:
we can compute the gradient: ∂L

∂q̂ . This way, we can com-
pute q̂ iteratively by q̂t+1 = q̂t + εf( ∂L

∂q̂t
, q̂t) where q̂t is q̂ at

step t, f computes the updates and ε is the learning rate. We
set q̂0 = q and use Adam [17] for f .

3.2. Perceptual Loss

Imperceptibility (governed by Lp in Eq.2) is a hard con-
straint in adversarial attacks. It requires that human cannot
distinguish easily between the adversarial samples and real
data. Existing approaches on images and videos achieve im-
perceptibility by constraining the pixel-wise or frame-wise
perturbation magnitude measured by l norms. One major
difference in our problem is motion dynamics.

To fully represent the dynamics of a motion, we need
the derivatives from zero-order (joint location), first-order
(joint velocity) up to nth-order. One common approxima-
tion is to use first n terms. When it comes to impercepti-
bility, the perceived motion naturalness is vital and not all
derivatives are at the same level of importance [40]. In-
spired by the work in character animation [39, 41, 3], we
propose a new perceptual loss:

Lp(q, q̂) = αldyn + (1− α)lbl (3)

lbl = ||Bl(q)−Bl(q̂)||22 =
1

M

M∑
i=1

||Bl(qi)−Bl(q̂i)||22 (4)

ldyn =

∞∑
n=0

βn||(qn − q̂n)||22 where
∞∑

n=0

βn = 1 (5)

where α = 0.3. lbl penalizes any bone length deviations in
every frame where M is the total frame number. Bl(qi) ∈

R24×1 is the bone length vector of frame qi. Theoretically,
bone lengths do not change over time. However, they do
vary in the original data due to tracking errors. This is why
lbl is designed to be frame-wise.
ldyn is the dynamics loss. We use a strategy called

derivative matching. It is a weighted (by βn) sum of the l2
distance between qn and q̂n, where qn and q̂n are the nth-
order derivatives and can be computed by forward differ-
encing. Although n goes up to infinity, in practice, we ex-
plored up to n = 4, which includes joint position, velocity,
acceleration, jerk and snap. After exhaustive experiments,
we find that enforcing the 0th, 2nd and 4th order deriva-
tives while discarding other derivatives gives good results,
with the 4th derivative adding small gains. Including con-
secutive derivatives (e.g. 0th, 1st and 2nd) over-constrains
the system. Also, the gain of including higher order deriva-
tives diminishes while incurring more computation. A good
compromise is to set β0 = 0.6 and β2 = 0.4. Match-
ing the 2nd-order profiles of two motions is critical. For
skeletal motions, small location deviations can still gener-
ate large acceleration differences, resulting in two distinc-
tive motions. More often, it generates severe jittering and
thus totally unnatural motions. An alternative way of reg-
ulating the dynamics is to purely smooth the motion, by
e.g. minimizing the acceleration. But it dampens highly
dynamic motions such as jumping [40]. Also, consider-
ing more derivatives above n = 4 makes the optimization
harder to solve and over-weighs their benefits.

3.3. White-box Attack

With the perceptual loss designed, varying the formula-
tion of the classification loss (Lc in Eq.2) allows us to form
different attacking strategies. We present three strategies.

Anything-but Attack (AB) aims to fool the classifier so
that yq 6= yq̂ . This can be achieved by maximizing the cross
entropy between Φ(q) and Φ(q̂):

Lc(q, q̂) = −cross entropy(Φ(q),Φ(q̂)) (6)

Anything-but-N Attack (ABN) is a generalization of
AB. It aims to confuse the classifier so that it has similar
confidence levels in multiple classes. ABN is more suitable
to confuse classifiers which rely on top N accuracy. In addi-
tion, we find that it performs better in black-box attacks by
transferability, which will be detailed in experiments. One
naive solution is to use multiple AB losses for the top n
classes, but it will make the optimization difficult and will
not scale as the class number increases. Instead, we pro-
pose an easier loss function, maximizing the entropy of the
predicted distribution of q̂:

Lc(q, q̂) = −Entropy(Φ(q̂)), yq 6∈ TopN(Φ(q̂)) (7)

where TopN is the set of the top n class labels in the predic-
tive distribution Φ(q̂). By minimizing Lc, we actually max-
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imize the entropy of Φ(q̂), i.e. forcing it to be flat over all
the class labels and thus reduce the confidence of the classi-
fier over any particular class. We stop the optimization once
the ground-truth label falls beyond the top n classes. ABN
is a harder optimization problem than AB because it needs
the predictive distribution to be as flat as possible.

3.3.1 Specified Attack (SA)

Different from AB and ABN, sometimes it is useful to fool
the classifier with a pre-defined class label. Given a fake
label yq̂ , we can use its class label distribution Φq̂ , a one-
hot vector, and minimize the cross entropy:

Lc(q, q̂) = cross entropy(Φ(q),Φ(q̂)) (8)

This is the most difficult scenario because it highly depends
on the similarity between the source and target label. While
turning ‘clapping over the head’ into ‘raising two hands’ is
achievable with minimal visual changes, turning ‘running’
into ‘squat’ without being noticed is much harder.

3.4. Black-box Attack

While the white-box attack relies on the ability to esti-
mate ∂L

∂q̂ , which requires the access to the target classifier
and is not always possible, black-box attack assumes that
the full knowledge of the target classifier is inaccessible.
We therefore cannot directly compute ∂L

∂q̂ . Under such cir-
cumstances, we use attack-via-transferability [37]. It be-
gins with training a surrogate classifier. Then adversarial
samples are computed by white-box attacks on the surro-
gate classifier. Finally, the adversarial samples are used to
attack the target classifier in a black-box setting. In this pa-
per, we do not construct our own surrogate model. Instead,
we use an existing classifier as our surrogate classifier to at-
tack others. In experiments, we attack several state-of-the-
art models. To test the transferability and generalizability
of our method, we use every model in turn as the surrogate
model and attack the others.

4. Experimental Results
We first introduce the datasets and models for our exper-

iments, followed by our white-box and black-box results.
We then present our perceptual studies on the impercepti-
bility and compare SMART with other methods. During
the attack, we first use the source code shared by the authors
if available or implement the methods ourselves. Then we
train them strictly following the protocols in their papers.
Next, we test the models and collect the data samples that
the trained classifiers can successfully recognize, to create
our adversarial attack datasets. Finally, we compute the ad-
versarial samples using different attacking strategies.

4.1. Datasets

We choose three widely used datasets. HDM05 [28]
contains 2337 sequences for 130 actions performed by 5
non-professional actors. The 3D joint locations of the sub-
jects are provided in each frame. MHAD [29] is captured
using a multi-modal acquisition system, consisting of 11 ac-
tions performed by 12 subjects, where 5 repetitions are per-
formed for each action, resulting in 659 sequences. In each
frame, the 3D joint positions are extracted based on the 3D
marker trajectories. NTU60 [31] is captured by Kinect v2
and is currently one of the largest publicly available datasets
for 3D action recognition. It is composed of more than
56,000 action sequences. A total of 60 action classes are
performed by 40 subjects. The 3D coordinates of joints
are provided by Kinect. Due to the huge number of sam-
ples and the large intra-class and viewpoint variations, the
NTU60 is very challenging and is highly suitable to vali-
date the effectiveness and generalizability of our approach.
Note we exclude Kinectics [15], a dataset that is also used
in many papers, for two reasons. First, some older recogniz-
ers we investigate cannot achieve reasonable classification
accuracy on it. Second, its quality is too low to evaluate the
success of the attack, explained in Section 4.5.

4.2. Target Models

Rather than focusing only on the most recent methods,
we select a range of methods: HRNN [51], ST-GCN [50],
AS-GCN [19], DGNN [33], 2s-AGCN [34], MSG3D [26]
and SGN [55], and investigate their vulnerability under dif-
ferent scenarios. They include both RNN- and GNN-based
models. We implement HRNN following the paper and use
the code shared online for the rest of the methods. We
also follow their protocols in data pre-processing. Specif-
ically, we preprocess the HDM05 and MHAD as in [51]
(where HDM05 is grouped into 60 classes), and the NTU60
as in [34]. We also map different skeletons to a standard
25-joint skeleton as in [40].

4.3. White-box Attack

In this section, we qualitatively and quantitatively evalu-
ate the performance of SMART. We use a learning rate be-
tween 0.005 and 0.0005 and a maximum of 300 iterations.
The setting for AB and ABN is straightforward. In SA, the
number of experiments needed would be prohibitively large
if we were to attack every motion with every other label but
the ground-truth. Instead, we randomly select fake labels
to attack. Since the number of motions attacked is large,
the results are sufficiently representative. Note that this is a
very strict test as most of the motions are rather distinctive.
For simplicity, we only show representative results in the
paper. For more results, please refer to the supplementary
materials and video.
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4.3.1 Attack Results.

We show the quantitative results of AB in Table 1 Left.
High success rates are universally achieved across different
datasets and target models, demonstrating the generalizabil-
ity of SMART. For adversarial attack, it is not surprising
if the before-attack and after-attack labels are semantically
similar, e.g. from drinking water to eating. In SMART, a
variety of examples are found where the after-attack labels
are significantly different from the original ones. Due to
the space limit, we leave all the details in the supplemen-
tary video and materials and only give a couple of examples
here. In HDM05, high confusion is found between turn L
(turn left) and walk rightRC (walk sideways, to the right,
feet cross over alternately front/back) in HRNN. Similarly,
in NTU, high confusion is found between standing up (from
sitting) and wear a shoe in 2SAGCN. These labels have
completely different semantics and involve different body
parts and motion patterns. Moreover, this kind of confusion
is observed across all datasets and models.

We show the ABN results in Table 1 Mid, in two varia-
tions: AB3 and AB5, as a generalization of AB. They are
good for attacking classifiers based on top N accuracy. ABN
is a harder problem than AB, with AB5 being harder than
AB3, hence has a lower success rate. In terms of datasets,
MHAD is the hardest for ABN because there are only 11
classes as opposed to 65 and 60 in the other two. Excluding
the ground-truth label from the top 5 out of 11 classes is
much more challenging than that of 65 and 60 classes.

Table 1 Right shows the SA results. SA is the most diffi-
cult because randomly selected class labels often come from
significantly different action classes. Although it might be
easy to confuse the model between ‘deposit’ and ‘grab’, it
is extremely difficult to do so for ‘jumping’ and ‘wear-a-
shoe’. However, even under such circumstances, SMART
is still able to succeed in more than 70% cases on average,
with multiple tests above 96% and even achieving 100%.

Performance. The major computational cost comes
from the gradient estimation which depends on the target
model because it requires back-propagation. We run a max-
imum of 300 iterations. The total amount of time each it-
eration takes are on average 0.102s, 0.267s, 0.419s, 0.275s
and 0.738s on HRNN, ST-GCN, AS-GCN, DGNN and 2S-
AGCN respectively, on Nvidia GTX 1080Ti (DGNN and
2S-AGCN) and TitanXp (HRNN, ST-GCN and AS-GCN).

4.4. Black-box Attack

In the black-box setting, we attack the NTU dataset.
Since we need a surrogate model to fool the target mod-
els, we first use 2s-AGCN as the surrogate model to attack
DGNN, AS-GCN, MSG3D and SGN. The results are shown
in Table 2. We notice that SMART achieves successes on
all target models except MSG3D, which indicates that not
all target models are equally easy to fool by the transferred

black-box attack. To further investigate it, we use three
models: AS-GCN, DGNN and 2s-AGCN, and in turn take
every model as the surrogate model and produce adversarial
examples using AB and AB5.

Results are shown in Table 3. AB5 results are in gen-
eral better than AB. We speculate that there are two factors.
First, the predictive class distribution of AB5 is likely to be
flatter than AB. The flatness improves the transferability be-
cause a target model with similar decision boundaries will
also produce a similarly flat predictive distribution, and thus
is more likely to be fooled. Besides, since the ground-truth
label is pushed away from the top 5 classes in the surrogate
model, it is also likely to be far away from the top in the
target model. We also notice that the transferability is not
universally successful. DGNN and AS-GCN cannot easily
fool one another. Meanwhile, 2S-AGCN can fool and be
fooled by both of them. Since the transferability can be de-
scribed by distances between decision boundaries [37], our
speculation is that 2S-AGCN’s boundary structure overlaps
with both DGNN and AS-GCN significantly but the other
two overlap little. The theoretical reason is hard to identify,
as the formal analysis on transferability has just emerged on
static data [37, 57]. The theoretical analysis of time-series
data is beyond the scope of this paper and is therefore left
for future work.

4.5. Perceptual Study

One key difference between SMART and existing work
is that we employ both numerical accuracy and rigorous
perceptual studies to evaluate the success of attacks. Imper-
ceptibility is a requirement for any adversarial attack. All
the success shown above would have been meaningless if
the attack were noticeable to humans. To evaluate imper-
ceptibility, qualitative visual comparisons can be used on
the image-based attack, but rigorous perceptual studies are
needed for complex data [47], as the numerical success can
always be achieved by sacrificing the imperceptibility. This
is especially the case for motions. Also, the necessity of per-
ceptual studies restricts us from using noisy datasets (e.g.
Kinetics [15]) because the subjects are unable to identify
perturbations in side-by-side comparisons due to the exces-
sive jittering and tracking errors in the original data.

We conduct three user studies (Deceitfulness, Natural-
ness and Indistinguishability). Since our sample space is
huge (7 models × 3 datasets × 3 attacking strategies), we
choose the most representative setting. We use the adversar-
ial samples under AB in HDM05 and MHAD. NTU dataset
is only used in visual evaluation, not perceptual study due
to motion jittering in the original data (see the video for de-
tails). In total, we recruited totally 41 subjects (age between
18 and 37). Details are in the supplementary materials.

Deceitfulness. In each user study, we randomly choose
100 motions with the ground-truth and the after-attack la-
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Model/Data HDM05 MHAD NTU HDM05 MHAD NTU HDM05 MHAD NTU
HRNN 100 100 99.56 100/100 100/100 99.84/99.62 67.19 57.41 49.17

ST-GCN 99.57 99.96 100 93.30/90.28 76.86/70.5 95.86/91.32 74.95 66.93 100
AS-GCN 99.36 92.84 97.43 91.46/82.83 42.07/22.34 91.18/82.47 64.62 40.18 99.48
DGNN 96.09 94.46 92.51 93.55/86.32 87.54/74.27 98.73/97.62 97.26 96.13 99.99

2s-AGCN 99.18 95.97 100 83.40/75.2 55.9/32.08 100/100 96.72 97.53 100
mean 98.84 96.65 97.9 92.34/86.93 72.47/59.84 97.12/94.21 80.15 71.64 89.73

Table 1. Success rate. Left: Anything-but (AB) Attack. Mid: Anything-but-N Attack. The results are AB3/AB5 when n = 3 (AB3) and 5
(AB5). Right: Specified Attack (SA).

Figure 1. Visual comparison between different losses. Highlighted spine areas in the same frame show key visual differences.

DGNN AS-GCN MSG3D SGN
98.37 98.10 3.08% 97.75%

Table 2. Success rate of AB black-box attack, using 2s-AGCN.

DGNN 2s-AGCN AS-GCN
DGNN n/a 90.6(90.99) 7.24(7.63)

2s-AGCN 98.37(98.46) n/a 98.10(98.96)
AS-GCN 10.90(12.97) 91.17(91.99) n/a

Table 3. Success rate (AB/AB5) of black-box attack.

bel for 100 trials. In each trial, the video is played for 6
seconds and then the subject is asked to choose which la-
bel best describes the motion with no time limit. This is to
test whether SMART visually changes the semantics of the
motion. This is also to test whether people can distinguish
actions by only observing skeletal motions.

Naturalness. Since unnatural motions can be easily
identified as a result of the attack, we perform ablation tests
on different loss term combinations. We design four set-
tings: l2, l2-acc, l2-bone, SMART. l2 is where only the l2
norm of joint perturbation is used, which is also widely used
in existing methods such as image/video/mesh attack. l2-
acc is l2 plus the acceleration loss, l2-bone is l2 plus the
bone-length loss and SMART is the proposed perceptual
loss. We first show static poses in Figure 1. Motion com-
parisons are available in the supplementary video. Visually,
SMART is the best. Even from static poses, one can easily
see the artifacts caused by joint displacements. The spinal
joints are the most obvious. The joint displacements cause

unnatural zig-zag bending in l2, l2-acc and l2-bone, which
is even more obvious in motions.

Next, we conduct perceptual studies. In each study, we
randomly select 50 motions. For each motion, we make two
trials. The first includes one attacked motion by SMART
and one randomly selected from l2, l2-acc and l2-bone. The
second includes two motions randomly drawn from l2, l2-
acc and l2-bone. The first trial evaluates our results against
other alternatives and the second reveals the impact of dif-
ferent perceptual loss terms. In each of the 100 trials, two
motions are played together for 6 seconds twice, and then
the subject is asked to choose which motion looks more nat-
ural or cannot tell the difference, with no time limit.

Indistinguishability. In this study, we conduct a very
strict test to see if the users can tell if a motion is perturbed
in any way at all. In each experiment, 100 pairs of mo-
tions are randomly selected. In each trial, the left motion
is always the original and the user is told so. The right
one can be the original (sensitivity) or attacked (perceiv-
ability). We ask if the user can see any visual differences.
Each video is played for 6 seconds then the user is asked to
choose if the right motion is a changed version of the left,
with no time limit. This user study serves two purposes.
Perceivability is a direct test on Indistinguishability on the
attack while sensitivity is to screen out subjects who tend
to give random choices. Most users are able to recognize
if two motions are the same (close to 100% accuracy), but
there are a few whose choices are more random. We dis-
card any user data which falls below 80% accuracy on the
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sensitivity test.

4.5.1 Results.

The success rate of Deceitfulness is 93.32% overall, which
means that most of the time SMART does not visually
change the semantics of the motions. When looking into the
success rate on different datasets, SMART achieves 86.77%
on HDM05 and 96.38% on MHAD. This also shows that
most of the time people can tell different actions by observ-
ing skeletal motions, even for similar actions. Next, Figure
2 Left shows the results of Naturalness. Users’ preferences
over different losses are SMART > l2-acc > l2 > l2-bone.
SMART leads to the most natural results as expected.

Finally, we conduct the Indistinguishability test. The
final results are 81.9% on average, 80.83% on HDM05 and
83.97% on MHAD. Note that this is a side-by-side compar-
ison and thus is very harsh. The users are asked to find any
visual differences. To avoid situations where motions are
too fast to spot any differences (e.g. kicking and jumping
motions), we also play the motions three times more slowly
than the original. Even under such harsh tests, humans still
cannot spot any difference most of the time.

4.6. Classifier Robustness under SMART Attack

After rigorously confirming the effectiveness of SMART
across datasets and models, we analyze the results to inves-
tigate the vulnerability of the target models. We start by
looking at which joint or joint groups are attacked the most.
Initially, if some joints tend to be attacked together, the cor-
relations between the joint perturbations should be high. So
we compute the Pearson correlations of joint perturbations,
shown in Figure 3 Left. Although some local high correla-
tions can be found (e.g. between joint 2 and 3, 6 and 7, 9
and 10, 20 and 21), they are not universal. Please see other
results in the supplementary material. Next, we assume that
the attack behavior might be class-dependent, i.e. depend-
ing on actions. However, after computing the joint pertur-
bation correlations based on actions, no consistent and ob-
vious patterns is found either.

Finally, we find that the displacement-speed and
displacement-acceleration correlations reveal a consistent
description of the vulnerability, shown in Figure 3 Mid and
Right. The correlations are computed between the joint
displacements and the original velocities and accelerations,
respectively. These two correlations reveal the joint vul-
nerability: the higher the speed/acceleration is, the more
the joint is attacked (shown by the high values along the
main diagonal). In addition, they also reveal some consis-
tent across-joint correlations (as shown by red boxes). Note
that the joints in a red box belong to one part of the body
(four limbs and one trunk). These joints normally have high
within-group correlations in motions. Coordinated attacks

on them easily fool the action recognizers.
The analysis suggests that joints with high velocity and

acceleration are important features in the target models be-
cause these joints are attacked the most. This is especially
so for joint groups with high within-group correlations.
Most of the tested models are very sensitive to perturba-
tions to these features, raising a big concern. Meanwhile,
the analysis also suggests that reducing the sensitivity of
a classifier over these features will increase its resistance
to adversarial attack. To this end, one possible solution
is to induce noises around the perturbation gradient dur-
ing training, instead of purely white noises used by many
methods. Another possibility is to introduce semantic de-
scriptors (e.g. featuring a waving motion as one hand mov-
ing side-to-side above the head) which are not sensitive to
small changes in these raw features.

Dynamics in Attack Imperceptibility. To investigate the
role of dynamics compared with joint-only perturbation, we
conduct further analysis on SMART-vs-l2 where users pre-
fer SMART to l2. We first compute their respective joint-
wise deviations from the original motions, shown in Fig-
ure 2 Right. In general, the perturbations of SMART are
in general higher than l2 and have larger standard devia-
tions. However, the users still choose SMART over l2. It
indicates that with proper exploitation of dynamics, larger
perturbations can generate even more desirable results. This
is somewhat surprising and significantly different from the
static data (e.g. images), where it is believed that the per-
turbation magnitude is tightly tied to imperceptibility [11].
This also suggests that classifiers could use perturbations
on the dynamics to make the training more robust, which
is complementary to the afore-mentioned suggestion of in-
ducing noises around the perturbation gradient.

4.7. Comparison

To show that SMART is an effective tool for attack anal-
ysis, we compare SMART with IAA [13] and CIASA [22].
As there are two competing factors (attack success vs im-
perceptibility), we fix one and compare the other. The suc-
cess rate is largely governed by the clipping threshold of the
perturbation magnitude in IAA and CIASA, and is hence
easily tunable, while user studies on imperceptibility are
expensive. We, therefore, tune IAA & CIASA to achieve
similar success rates, then conduct perceptual studies for
comparison. Specifically, we conduct AB attack on HDM05
and the Indistinguishability test, as AB is also used in both
papers. Each experiment includes 120 pairs of motions in-
cluding motions evenly sampled from the original motions,
SMART, IAA and CIASA results (30 motions each). In
each trial, the left motion is the original motion while the
right one is either the original motion, a SMART sample,
an IAA sample or a CIASA sample. Results are shown in
Table 4. While the attack success rates of the three methods
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Figure 2. Left: Normalized user preference on Naturalness. our: SMART. bone: l2-bone. acc: l2-acc. The vertical axis is the percentage
of user preference. Right: The mean (Top) and standard deviation (Bottom) of the joint-wise deviations of SMART and l2.

Figure 3. 2S-AGCN on HDM05, displacement-displacement cor-
relations (Left), displacement-speed correlations (Middle) and
displacement-acceleration correlations (Right).

Model/Method SMART IAA CIASA
HRNN 100% 98.12% 98.75%
STGCN 99.57% 99.57% 99.56%

2S-AGCN 99.18% 98.77% 98.98%
HRNN 42.22% 36.67% 32.22%
STGCN 90.00% 87.5% 90.00%

2S-AGCN 80.83% 35.33% 49.33%
Table 4. Success rate in attack (Upper) and Indistinguishability
(Lower). The attack success rate is the best results for SMART,
IAA and CIASA.

are similar, SMART, in general, generates more indistin-
guishable adversarial samples than IAA and CIASA do. We
notice that most failures of IAA and CIASA are caused by
broken motion dynamics and are therefore easily perceiv-
able. This is understandable because IAA does not consider
dynamics and thus generates jittering motions; CIASA uses
GANs to govern the motion quality, which can only gener-
ate plausible motions, but not imperceptible samples. De-
tails can be found in the supplementary materials.

5. Discussion
Imperceptibility is vital in adversarial attack. When it

comes to skeletal motions, perceptual studies are essential
because there is no widely accepted metrics that fully re-
flect perceived realism/naturalness/quality. In addition, it
helps us to uncover a unique feature of attacking skeletal
motions. Losses solely based on perturbation magnitude
are often overly conservative because they are mainly de-
signed for attacking static data and unable to fully utilize

the dynamics. Next, forming the joint deviation as a hard
constraint [22] via clipping is not the best strategy. The
threshold needs to be manually tuned and it varies based on
data. Besides, our perceptual study shows that larger pertur-
bations can be used if the dynamics are exploited properly.

SMART is a straightforward but surprisingly effective at-
tack method across datasets, models, attack strategies, and
harsh perceptual studies. The simplicity of SMART raises
an alarming concern for current action recognition research
as it does not require complex computation to attack the
state-of-the-art models. Through analysing SMART’s be-
havior, we identified one key cause of their vulnerability:
the over-sensitivity to joints with high velocity and accel-
eration, which we hope will help the future research to im-
prove the recognition robustness.

6. Conclusion and Future Work
We demonstrated the vulnerability of several state-of-

the-art action recognizers under adversarial attack. To this
end, we proposed a new method, SMART, to attack ac-
tion recognizers based on 3D skeletal motions. Through
comprehensive qualitative and quantitative evaluations, we
showed that SMART is general across multiple state-of-
the-art models on various benchmark datasets. Moreover,
SMART is versatile since it can deliver both white-box and
black-box attacks with multiple attacking strategies. Fi-
nally, SMART is deceitful as verified in extensive percep-
tual studies. Based on SMART, we revealed possible causes
of the vulnerability of several state-of-the-art models. In
the future, we would like to theoretically investigate why
the transferability varies between different models under the
black-box attack. We will also investigate how to systemat-
ically resist adversarial attack.
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Hsiao for their help on the perceptual study. This project has
received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement
No 899739 CrowdDNA, EPSRC (EP/R031193/1), NSF
China (No. 61772462, No. U1736217), RCUK grant
CAMERA (EP/M023281/1, EP/T014865/1) and the 100
Talents Program of Zhejiang University.

8



References
[1] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin

Kwok. Synthesizing robust adversarial examples. arXiv,
abs/1707.07397, 2017. 2

[2] N. Carlini and D. Wagner. Towards evaluating the robustness
of neural networks. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 39–57, 2017. 3

[3] Wenheng Chen, He Wang, Yi Yuan, Tianjia Shao, and Kun
Zhou. Dynamic future net: Diversified human motion gener-
ation. In Proceedings of the 28th ACM International Confer-
ence on Multimedia, MM ’20, page 2131–2139, New York,
NY, USA, 2020. Association for Computing Machinery. 3

[4] Ke Cheng, Yifan Zhang, Xiangyu He, Weihan Chen, Jian
Cheng, and Hanqing Lu. Skeleton-based action recognition
with shift graph convolutional network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2020. 2

[5] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun
Zhu, and Le Song. Adversarial attack on graph structured
data. In Proceedings of the 35th International Conference
on Machine Learning, 2018. 2

[6] M. Devanne, H. Wannous, S. Berretti, P. Pala, M. Daoudi,
and A. Del Bimbo. 3d human action recognition by shape
analysis of motion trajectories on riemannian manifold.
IEEE Transactions on Cybernetics, 2015. 2

[7] Yong Du, Wei Wang, and Liang Wang. Hierarchical recur-
rent neural network for skeleton based action recognition.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1110–1118, 2015. 1, 2

[8] Ivan Evtimov, Kevin Eykholt, Earlence Fernandes, Ta-
dayoshi Kohno, Bo Li, Atul Prakash, Amir Rahmati, and
Dawn Song. Robust physical-world attacks on machine
learning models. arXiv, abs/1707.08945, 2017. 2

[9] B. Fernando, E. Gavves, M. José Oramas, A. Ghodrati, and
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