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1. Additional Experimental Details
1.1. Implement Details and Experimental Settings

We first give details about the Random Exploration and
Aimed Probing. For easy reference, the random exploration
is reformulated in Eq. 1:

x̃ = x′ + W∆,

where ∆∗ = R∗ − (RT
∗ d∗)d∗, d∗ =

x∗ − x′∗
‖x∗ − x′∗‖

,

R∗ = λ
r

‖r‖
‖x∗ − x′∗‖, r ∈ N(0, I), (1)

where x̃ is the new perturbed sample, x and x′ are the at-
tacked motion and current adversarial sample. We use joint
positions and the subscript ∗ indicates either the x, y, or z
joint coordinate. The update on x′ is ∆ weighted by W -
a diagonal matrix with joint weights. ∆* controls the di-
rection and magnitude of the update, and depends on two
variables R∗ and d∗. d∗ is the directional vector from x′

to x. R∗ is a random directional vector sampled from a
Normal distribution N(0, I) where I is an identity matrix,
I ∈ Rz×z , z = mn/3, m is the number of Dofs in one
frame and n is the total frame number. This directional vec-
tor is scaled by ‖x∗ − x′∗‖ and λ.

The aimed probing is reformulated by Eq. 2:

x̃ = x′ + β(x− x′), (2)

where β is a forward step size that can also be dynamically
adjusted. β is decreased by half to conduct the aimed prob-
ing again if x̃ is not adversarial; otherwise, β is doubled,
then we enter the next sub-routine.

In random exploration, we aim to find an adversarial
sample that is closer to x. However, as the shape of the
local space is unknown and highly nonlinear, we do sam-
pling to exploit it. Therefore, we execute multiple random
∗The research was conducted during the visit to the University of Leeds.
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explorations instead of only one to get q intermediate results
in a sub-routine call, and compute the attack success rate. If
the rate is less than 40%, λ is reduced by 10% as it means
that we are very close to the classification boundary ∂C and
λ is too big; if it is higher than 60%, λ is increased by 10%;
otherwise we do not update λ.

For targeted attack, we randomly select one adversarial
sample from the q intermediate samples to do aimed prob-
ing. This is mainly to ensure that the direction of the aimed
probing is random. Although multiple samples can be se-
lected, it would incur more computational costs with little
gain shown by our preliminary experiments. For untargeted
attack, the q results are normally in different classes which
we call adversarial classes. The attack difficulty varies de-
pending on the choice of samples. Usually the closer the
adversarial sample is to the original sample, the easier the
attack. Therefore, we randomly select one sample in each
adversarial class to conduct aimed probing, then only keep
the one that has the smallest distance to the original motion
x after the aimed probing. In the end, when the adversar-
ial sample is near to the original motion, we set a threshold
value τ to ensure that λ is not higher than τ . This is to
ensure that the attack can eventually converge.

In all experiments, we set q = 5. The initial β is set
to 0.95. The initial λ is set to 0.2 when attacking SGN
model and 0.1 on both STGCN and MSG3D. τ is set to
1.5 on SGN and 0.4 on both STGCN and MSG3D. We set
the spinal joint weights to 0 in W, and other joint weights
to 1. For untargeted attack, we set ε = 0.1 on both HDM05
and NTU, 0.05 on Kinetics. For targeted attack, ε is set to
0.5 on HDM05 and both 0.2 on NTU and Kinetics. Consid-
ering the optimization speed, it is unrealistic to execute the
manifold projection in every iteration. We therefore execute
it every 100 iterations on HDM05 and every 250 iterations
on NTU and Kinetics.

The adversarial samples are computed using PyTorch on
a PC with a NVIDIA GTX 2080Ti GPU and a Xeon Silver
4216 CPU. We also show how different metrics vary based
on the number of actual queries BASAR makes to the at-

1



tacked model. The evaluation versus number of queries are
shown from Fig 1 to Fig 3. Being consistent with our analy-
sis in the paper, compared with STGCN and MSG3D, SGN
usually converges faster but it is difficult for BASAR to fur-
ther improve the adversarial sample as it does on STGCN
and MSG3D. We speculate that this is due to the seman-
tic information that SGN uses prevents small perturbations
from altering the class labels.

Models HDM05 NTU Kinetics
Queries Time Queries Time Queries Time

STGCN UA 3636 4 7337 12 7167 28
TA 8862 15 15724 16 15234 41

MSG3D UA 3722 6 14640 18 7190 29
TA 9111 16 23227 30 15416 56

SGN UA 974 4 623 5 228 10
TA 277 3 260 4 180 8

Table 1. The averaged number of queries and consuming
time(min) for generating an adversarial sample on different mod-
els and datasets.

Figure 1. Numerical evaluation versus number of queries on
HDM05 with STGCN, MSG3D and SGN. UA/TA refers to Un-
targeted Attack/Targeted Attack.

Figure 2. Numerical evaluation versus number of queries on NTU
with STGCN, MSG3D and SGN.

Figure 3. Numerical evaluation versus number of queries on Ki-
netics with STGCN, MSG3D and SGN.

1.2. Detailed Perceptual Studies

In all 50 subjects (age between 18 and 54), 86% of users
are aged under 30 and 88% are male. The users have vari-
ous background. Around 25% users have research expertise
in human activity recognition or adversarial attack; another
20% have general deep learning or computer vision back-
ground; 45% people study in engineering (e.g. mechan-
ical, electrical and control). The other users have different
arts background. By comparing their performance we found
that the age, gender and work/research background actually
do not have obvious influence to the results. The results are
mainly dependent on the quality of the adversarial samples.

Deceitfulness. This study is to test: whether BASAR vi-
sually changes the meaning of the motion and whether the
meaning of the original motion is clear to the subjects. In
each user study, we randomly choose 45 motions (15 from
STGCN, MSG3D and SGN respectively) with the ground
truth label and after-attack label for 45 trials. In each trial,
the video is played for 6 seconds then the user is asked
the question,‘which label best describes the motion? and
choose Left or Right’, with no time limits.

Naturalness. This ablation study is to test whether on-
manifold adversarial samples look more natural than off-
manifold samples. In this user study, we perform abla-
tion studies to test whether on-manifold adversarial samples
look more natural than off-manifold samples. We design
two settings: MP and No MP. MP refers to BASAR, with
manifold projection. No MP is where the proposed method
without manifold projection. In each study, 60 (20 from
STGCN, MSG3D and SGN respectively) pairs of motions
are randomly selected for 60 trials. Each trial includes one
from MP and one from No MP. The two motions are played
together for 6 seconds twice, then the user is asked, ‘which
motion looks more natural? and choose Left, Right or Can’t
tell’, with no time limits.

Indistinguishability. Indistinguishability is the strictest
test to see whether adversarial samples by BASAR can sur-
vive a side-by-side scrutiny. In each user study, 40 pairs of
motion are randomly selected, half from STGCN and half
from MSG3D. For each trial, two motions are displayed
side by side. The left motion is always the original and the
user is told so. The right one can be original (sensitivity)
or attacked (perceivability). The two motions are played
together for 6 seconds twice, then the user is asked, ‘Do
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